Estimates for a multi-group study with a categorical outcome variable
Estimates for a multi-group study with a categorical outcome variable
Returns object estimate_pdiff_ind_contrast is suitable for a multi-group design (between subjects) with a categorical outcome variable. It accepts a user-defined set of contrast weights that allows estimation of any 1-df contrast. It can express estimates as a difference in proportions and as an odds ratio (2-group designs only). You can pass raw data or summary data.
outcome_variable: For raw data - The column name of the outcome variable which is a factor, or a vector that is a factor
grouping_variable: For raw data - The column name of the grouping variable which is a factor, or a vector that is a factor
cases: For summary data - A numeric vector of 2 or more event counts, each an integer >= 0
ns: For summary data - A numeric vector of sample sizes, same length as counts, each an integer >= corresponding event count
contrast: A vector of group weights, same length as number of groups.
case_label: An optional numeric or character label For summary data, used as the label and defaults to 'Affected'. For raw data, used to specify the level used for the proportion.
grouping_variable_levels: For summary data - An optional vector of group labels, same length as cases
outcome_variable_name: Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.
grouping_variable_name: Optional friendly name for the grouping variable. Defaults to 'My grouping variable' or the grouping variable column name if a data.frame is passed.
conf_level: The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
count_NA: Logical to count NAs (TRUE) in total N or not (FALSE)
Returns
Returns object of class esci_estimate
es_proportion_difference
type -
outcome_variable_name -
case_label -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
SE -
effect_size_adjusted -
ta_LL -
ta_UL -
es_odds_ratio
outcome_variable_name -
case_label -
grouping_variable_name -
effect -
effect_size -
SE -
LL -
UL -
ta_LL -
ta_UL -
overview
grouping_variable_name -
grouping_variable_level -
outcome_variable_name -
outcome_variable_level -
cases -
n -
P -
P_LL -
P_UL -
P_SE -
P_adjusted -
ta_LL -
ta_UL -
es_phi
grouping_variable_name -
outcome_variable_name -
effect -
effect_size -
SE -
LL -
UL -
Details
Once you generate an estimate with this function, you can visualize it with plot_mdiff() and you can test hypotheses with test_mdiff().
The estimated proportion differences are from statpsych::ci.lc.prop.bs().
The estimated odds ratios (if returned) are from statpsych::ci.oddsratio().
Examples
# From raw datadata("data_campus_involvement")estimate_from_raw <- esci::estimate_pdiff_ind_contrast( esci::data_campus_involvement, CommuterStatus, Gender, contrast = c("Male"=-1,"Female"=1))# To visualize the estimatemyplot_from_raw <- esci::plot_pdiff(estimate_from_raw)# To conduct a hypothesis testres_htest_from_raw <- esci::test_pdiff(estimate_from_raw)# From summary dataestimate_from_summary <- esci::estimate_pdiff_ind_contrast( cases = c(78,10), ns = c(252,20), case_label ="egocentric", grouping_variable_levels = c("Original","Replication"), contrast = c(-1,1), conf_level =0.95)# To visualize the estimatemyplot_from_summary <- esci::plot_pdiff(estimate_from_summary)# To conduct a hypothesis testres_htest_from_summary <- esci::test_pdiff(estimate_from_summary)