Estimates the linear correlation (Pearson's r) between two continuous variables
Estimates the linear correlation (Pearson's r) between two continuous variables
estimate_r is suitable for a design with two continuous variables. It estimates the linear correlation between two variables (Pearson's r) with a confidence interval. You can pass raw data or summary data.
estimate_r( data =NULL, x =NULL, y =NULL, r =NULL, n =NULL, x_variable_name ="My x variable", y_variable_name ="My y variable", conf_level =0.95, save_raw_data =TRUE)
Arguments
data: For raw data - A data frame or tibble
x: For raw data - The column name of the outcome variable, or a vector of numeric data
y: For raw data - The column name of the outcome variable, or a vector of numeric data
r: For summary data - A pearson's r correlation coefficient
n: For summary data - Sample size, an integer > 0
x_variable_name: Optional friendly name for the x variable. Defaults to 'My x variable' or the outcome variable column name if a data frame is passed.
y_variable_name: Optional friendly name for the y variable. Defaults to 'My y variable' or the outcome variable column name if a data frame is passed.
conf_level: The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
save_raw_data: For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object
Returns
Returns object of class esci_estimate
overview
outcome_variable_name -
mean -
mean_LL -
mean_UL -
median -
median_LL -
median_UL -
sd -
min -
max -
q1 -
q3 -
n -
missing -
df -
mean_SE -
median_SE -
es_r
x_variable_name -
y_variable_name -
effect -
effect_size -
LL -
UL -
SE -
n -
df -
ta_LL -
ta_UL -
regression
component -
values -
LL -
UL -
raw_data
x -
y -
fit -
lwr -
upr -
Details
Reach for this function to conduct simple linear correlation or simple linear regression.
Once you generate an estimate with this function, you can visualize it with plot_correlation() and you can test hypotheses with test_correlation(). In addition, you can use plot_scatter()
to visualize the raw data and to conduct a regression analysis that r returns predicted Y' values from a given X value.
The estimated correlation is from statpsych::ci.cor(), which uses the Fisher r-to-z approach.
Examples
# From raw datadata("data_thomason_1")estimate_from_raw <- esci::estimate_r( esci::data_thomason_1, Pretest, Posttest
)# To visualize the value of rmyplot_correlation <- esci::plot_correlation(estimate_from_raw)# To visualize the data (scatterplot) and use regression to obtain Y' from Xmyplot_scatter_from_raw <- esci::plot_scatter(estimate_from_raw, predict_from_x =10)# To evaluate a hypothesis (interval null from -0.1 to 0.1):res_htest_from_raw <- esci::test_correlation( estimate_from_raw, rope = c(-0.1,0.1))# From summary dataestimate_from_summary <- esci::estimate_r(r =0.536, n =50)# To visualize the value of rmyplot_correlation_from_summary <- esci::plot_correlation(estimate_from_summary)# To evaluate a hypothesis (interval null from -0.1 to 0.1):res_htest_from_summary <- esci::test_correlation( estimate_from_summary, rope = c(-0.1,0.1))