estimate_r function

Estimates the linear correlation (Pearson's r) between two continuous variables

Estimates the linear correlation (Pearson's r) between two continuous variables

estimate_r is suitable for a design with two continuous variables. It estimates the linear correlation between two variables (Pearson's r) with a confidence interval. You can pass raw data or summary data.

estimate_r( data = NULL, x = NULL, y = NULL, r = NULL, n = NULL, x_variable_name = "My x variable", y_variable_name = "My y variable", conf_level = 0.95, save_raw_data = TRUE )

Arguments

  • data: For raw data - A data frame or tibble
  • x: For raw data - The column name of the outcome variable, or a vector of numeric data
  • y: For raw data - The column name of the outcome variable, or a vector of numeric data
  • r: For summary data - A pearson's r correlation coefficient
  • n: For summary data - Sample size, an integer > 0
  • x_variable_name: Optional friendly name for the x variable. Defaults to 'My x variable' or the outcome variable column name if a data frame is passed.
  • y_variable_name: Optional friendly name for the y variable. Defaults to 'My y variable' or the outcome variable column name if a data frame is passed.
  • conf_level: The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
  • save_raw_data: For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object

Returns

Returns object of class esci_estimate

  • overview

    • outcome_variable_name -
    • mean -
    • mean_LL -
    • mean_UL -
    • median -
    • median_LL -
    • median_UL -
    • sd -
    • min -
    • max -
    • q1 -
    • q3 -
    • n -
    • missing -
    • df -
    • mean_SE -
    • median_SE -
  • es_r

    • x_variable_name -
    • y_variable_name -
    • effect -
    • effect_size -
    • LL -
    • UL -
    • SE -
    • n -
    • df -
    • ta_LL -
    • ta_UL -
  • regression

    • component -
    • values -
    • LL -
    • UL -
  • raw_data

    • x -
    • y -
    • fit -
    • lwr -
    • upr -

Details

Reach for this function to conduct simple linear correlation or simple linear regression.

Once you generate an estimate with this function, you can visualize it with plot_correlation() and you can test hypotheses with test_correlation(). In addition, you can use plot_scatter()

to visualize the raw data and to conduct a regression analysis that r returns predicted Y' values from a given X value.

The estimated correlation is from statpsych::ci.cor(), which uses the Fisher r-to-z approach.

Examples

# From raw data data("data_thomason_1") estimate_from_raw <- esci::estimate_r( esci::data_thomason_1, Pretest, Posttest ) # To visualize the value of r myplot_correlation <- esci::plot_correlation(estimate_from_raw) # To visualize the data (scatterplot) and use regression to obtain Y' from X myplot_scatter_from_raw <- esci::plot_scatter(estimate_from_raw, predict_from_x = 10) # To evaluate a hypothesis (interval null from -0.1 to 0.1): res_htest_from_raw <- esci::test_correlation( estimate_from_raw, rope = c(-0.1, 0.1) ) # From summary data estimate_from_summary <- esci::estimate_r(r = 0.536, n = 50) # To visualize the value of r myplot_correlation_from_summary <- esci::plot_correlation(estimate_from_summary) # To evaluate a hypothesis (interval null from -0.1 to 0.1): res_htest_from_summary <- esci::test_correlation( estimate_from_summary, rope = c(-0.1, 0.1) )