plot_correlation creates a ggplot2 plot suitable for visualizing an estimate correlation between two continuous variables (Pearson's r). This function can be passed an esci_estimate object generated by estimate_r()
estimate: * An esci_estimate object generated by estimate_r()
error_layout: * Optional; One of 'halfeye', 'eye', 'gradient' or 'none' for how expected sampling error of the measure of central tendency should be displayed. Caution - the displayed error distributions do not seem correct yet
error_scale: * Optional real number > 0 specifying width of the expected sampling error visualization; default is 0.3
error_normalize: * Optional; One of 'groups' (default), 'all', or 'panels' specifying how width of expected sampling error distributions should be calculated.
rope: * Optional two-item vector specifying a region of practical equivalence (ROPE) to be highlighted on the plot. For a point null hypothesis, pass the same value (e.g. c(0, 0) to test a point null of exactly 0); for an interval null pass ascending values (e.g. c(-1, 1))
ggtheme: * Optional ggplot2 theme object to control overall styling; defaults to ggplot2::theme_classic()
Returns
Returns a ggplot object
Details
This function was developed primarily for student use within jamovi when learning along with the text book Introduction to the New Statistics, 2nd edition (Cumming & Calin-Jageman, 2024).
Expect breaking changes as this function is improved for general use. Work still do be done includes:
Revise to avoid deprecated ggplot features
Revise for consistent ability to control aesthetics and consistent layer names
Examples
# From raw datadata("data_thomason_1")estimate_from_raw <- esci::estimate_r( esci::data_thomason_1, Pretest, Posttest
)# To visualize the value of rmyplot_correlation <- esci::plot_correlation(estimate_from_raw)# To visualize the data (scatterplot) and use regression to obtain Y' from Xmyplot_scatter_from_raw <- esci::plot_scatter(estimate_from_raw, predict_from_x =10)# To evaluate a hypothesis (interval null from -0.1 to 0.1):res_htest_from_raw <- esci::test_correlation( estimate_from_raw, rope = c(-0.1,0.1))# From summary dataestimate_from_summary <- esci::estimate_r(r =0.536, n =50)# To visualize the value of rmyplot_correlation_from_summary <- esci::plot_correlation(estimate_from_summary)# To evaluate a hypothesis (interval null from -0.1 to 0.1):res_htest_from_summary <- esci::test_correlation( estimate_from_summary, rope = c(-0.1,0.1))