plot_proportion function

Plot an estimated proportion

Plot an estimated proportion

plot_proportion creates a ggplot2 plot suitable for visualizing an estimated proportion from a categorical variable. This function can be passed an esci_estimate object generated by estimate_proportion()

plot_proportion( estimate, error_layout = c("halfeye", "eye", "gradient", "none"), error_scale = 0.3, error_normalize = c("groups", "all", "panels"), rope = c(NA, NA), plot_possible = FALSE, ggtheme = NULL )

Arguments

  • estimate: * An esci_estimate object generated by estimate_proportion()
  • error_layout: * Optional; One of 'halfeye', 'eye', 'gradient' or 'none' for how expected sampling error of the measure of central tendency should be displayed. Caution - the displayed error distributions do not seem correct yet
  • error_scale: * Optional real number > 0 specifying width of the expected sampling error visualization; default is 0.3
  • error_normalize: * Optional; One of 'groups' (default), 'all', or 'panels' specifying how width of expected sampling error distributions should be calculated.
  • rope: * Optional two-item vector specifying a region of practical equivalence (ROPE) to be highlighted on the plot. For a point null hypothesis, pass the same value (e.g. c(0, 0) to test a point null of exactly 0); for an interval null pass ascending values (e.g. c(-1, 1))
  • plot_possible: * Boolean; defaults to FALSE; TRUE to plot lines at each discrete proportion possible given the sample size (e.g for a proportion with 10 total cases, would draw lines at 0, .1, .2, etc.)
  • ggtheme: * Optional ggplot2 theme object to control overall styling; defaults to ggplot2::theme_classic()

Returns

Returns a ggplot object

Details

This function was developed primarily for student use within jamovi when learning along with the text book Introduction to the New Statistics, 2nd edition (Cumming & Calin-Jageman, 2024).

Expect breaking changes as this function is improved for general use. Work still do be done includes:

  • Revise to avoid deprecated ggplot features
  • Revise for consistent ability to control aesthetics and consistent layer names

Examples

# From raw data data("data_campus_involvement") estimate_from_raw <- esci::estimate_proportion( esci::data_campus_involvement, CommuterStatus ) # To visualize the estimate myplot_from_raw <- esci::plot_proportion(estimate_from_raw) # From summary data estimate_from_summary <- esci::estimate_proportion( cases = c(8, 22-8), outcome_variable_levels = c("Affected", "Not Affected") ) # To visualize the estimate myplot_from_summary<- esci::plot_proportion(estimate_from_summary)