plot_scatter function

Generates a scatter plot of data for two continuous variables

Generates a scatter plot of data for two continuous variables

plot_scatter returns a ggplot2 object of data from two continuous variables. Can indicate regression line and its confidence interval,prediction intervals regression residuals and more. This function requires as input an esci_estimate object generated by estimate_r()

plot_scatter( estimate, show_line = FALSE, show_line_CI = FALSE, show_PI = FALSE, show_residuals = FALSE, show_mean_lines = FALSE, show_r = FALSE, predict_from_x = NULL, plot_as_z = FALSE, ggtheme = ggplot2::theme_classic() )

Arguments

  • estimate: * an esci_estimate object generated by estimate_r()

  • show_line: * Boolean; defaults to FALSE; set to TRUE to show the regression line

  • show_line_CI: * Boolean; defaults to FALSE; set to TRUE to show the confidence interval on the regression line

  • show_PI: * Boolean; defaults to FALSE; set to TRUE to show prediction intervals

  • show_residuals: * Boolean; defaults to FALSE; set to TRUE to show residuals of prediction

  • show_mean_lines: * Boolean; defaults to FALSE; set to TRUE to plot lines showing the mean of each variable

  • show_r: * Boolean; defaults to FALSE; set to TRUE to print the r

     value and its CI on the plot
    
  • predict_from_x: * Optional real number in the range of the x variable for the plot; Defaults to NULL; if passed, the graph shows the predicted Y' for this x value

  • plot_as_z: * Boolean; defaults to FALSE; set to TRUE to convert x and y scores to z scores prior to plotting

  • ggtheme: * Optional ggplot2 theme object to control overall styling; defaults to ggplot2::theme_classic()

Returns

Returns a ggplot object

Details

This function was developed primarily for student use within jamovi when learning along with the text book Introduction to the New Statistics, 2nd edition (Cumming & Calin-Jageman, 2024).

Expect breaking changes as this function is improved for general use. Work still do be done includes:

  • Revise to avoid deprecated ggplot features
  • Revise for consistent ability to control aesthetics and consistent layer names

Examples

# From raw data data("data_thomason_1") estimate_from_raw <- esci::estimate_r( esci::data_thomason_1, Pretest, Posttest ) # To visualize the value of r myplot_correlation <- esci::plot_correlation(estimate_from_raw) # To visualize the data (scatterplot) and use regression to obtain Y' from X myplot_scatter_from_raw <- esci::plot_scatter(estimate_from_raw, predict_from_x = 10) # To evaluate a hypothesis (interval null from -0.1 to 0.1): res_htest_from_raw <- esci::test_correlation( estimate_from_raw, rope = c(-0.1, 0.1) ) # From summary data estimate_from_summary <- esci::estimate_r(r = 0.536, n = 50) # To visualize the value of r myplot_correlation_from_summary <- esci::plot_correlation(estimate_from_summary) # To evaluate a hypothesis (interval null from -0.1 to 0.1): res_htest_from_summary <- esci::test_correlation( estimate_from_summary, rope = c(-0.1, 0.1) )