Generates a scatter plot of data for two continuous variables
Generates a scatter plot of data for two continuous variables
plot_scatter returns a ggplot2 object of data from two continuous variables. Can indicate regression line and its confidence interval,prediction intervals regression residuals and more. This function requires as input an esci_estimate object generated by estimate_r()
estimate: * an esci_estimate object generated by estimate_r()
show_line: * Boolean; defaults to FALSE; set to TRUE to show the regression line
show_line_CI: * Boolean; defaults to FALSE; set to TRUE to show the confidence interval on the regression line
show_PI: * Boolean; defaults to FALSE; set to TRUE to show prediction intervals
show_residuals: * Boolean; defaults to FALSE; set to TRUE to show residuals of prediction
show_mean_lines: * Boolean; defaults to FALSE; set to TRUE to plot lines showing the mean of each variable
show_r: * Boolean; defaults to FALSE; set to TRUE to print the r
value and its CI on the plot
predict_from_x: * Optional real number in the range of the x variable for the plot; Defaults to NULL; if passed, the graph shows the predicted Y' for this x value
plot_as_z: * Boolean; defaults to FALSE; set to TRUE to convert x and y scores to z scores prior to plotting
ggtheme: * Optional ggplot2 theme object to control overall styling; defaults to ggplot2::theme_classic()
Returns
Returns a ggplot object
Details
This function was developed primarily for student use within jamovi when learning along with the text book Introduction to the New Statistics, 2nd edition (Cumming & Calin-Jageman, 2024).
Expect breaking changes as this function is improved for general use. Work still do be done includes:
Revise to avoid deprecated ggplot features
Revise for consistent ability to control aesthetics and consistent layer names
Examples
# From raw datadata("data_thomason_1")estimate_from_raw <- esci::estimate_r( esci::data_thomason_1, Pretest, Posttest
)# To visualize the value of rmyplot_correlation <- esci::plot_correlation(estimate_from_raw)# To visualize the data (scatterplot) and use regression to obtain Y' from Xmyplot_scatter_from_raw <- esci::plot_scatter(estimate_from_raw, predict_from_x =10)# To evaluate a hypothesis (interval null from -0.1 to 0.1):res_htest_from_raw <- esci::test_correlation( estimate_from_raw, rope = c(-0.1,0.1))# From summary dataestimate_from_summary <- esci::estimate_r(r =0.536, n =50)# To visualize the value of rmyplot_correlation_from_summary <- esci::plot_correlation(estimate_from_summary)# To evaluate a hypothesis (interval null from -0.1 to 0.1):res_htest_from_summary <- esci::test_correlation( estimate_from_summary, rope = c(-0.1,0.1))