evalITR1.0.0 package

Evaluating Individualized Treatment Rules

AUPEC

Estimation of the Area Under Prescription Evaluation Curve (AUPEC) in ...

AUPECcv

Estimation of the Area Under Prescription Evaluation Curve (AUPEC) in ...

compute_qoi

Compute Quantities of Interest (PAPE, PAPEp, PAPDp, AUPEC, GATE, GATEc...

compute_qoi_user

Compute Quantities of Interest (PAPE, PAPEp, PAPDp, AUPEC, GATE, GATEc...

consist.test

The Consistency Test for Grouped Average Treatment Effects (GATEs) in ...

consistcv.test

The Consistency Test for Grouped Average Treatment Effects (GATEs) und...

create_ml_args

Create general arguments

create_ml_args_bart

Create arguments for bartMachine

create_ml_args_bartc

Create arguments for bartCause

create_ml_args_causalforest

Create arguments for causal forest

create_ml_args_lasso

Create arguments for LASSO

create_ml_args_superLearner

Create arguments for super learner

create_ml_args_svm

Create arguments for SVM

create_ml_args_svm_cls

Create arguments for SVM classification

create_ml_arguments

Create arguments for ML algorithms

estimate_itr

Estimate individual treatment rules (ITR)

evaluate_itr

Evaluate ITR

fit_itr

Estimate ITR for Single Outcome

GATE

Estimation of the Grouped Average Treatment Effects (GATEs) in Randomi...

GATEcv

Estimation of the Grouped Average Treatment Effects (GATEs) in Randomi...

het.test

The Heterogeneity Test for Grouped Average Treatment Effects (GATEs) i...

hetcv.test

The Heterogeneity Test for Grouped Average Treatment Effects (GATEs) u...

PAPD

Estimation of the Population Average Prescription Difference in Random...

PAPDcv

Estimation of the Population Average Prescription Difference in Random...

PAPE

Estimation of the Population Average Prescription Effect in Randomized...

PAPEcv

Estimation of the Population Average Prescription Effect in Randomized...

PAV

Estimation of the Population Average Value in Randomized Experiments

PAVcv

Estimation of the Population Average Value in Randomized Experiments U...

plot.itr

Plot the AUPEC curve

plot_estimate

Plot the GATE estimate

print.summary.itr

Print

print.summary.test_itr

Print

summary.itr

Summarize estimate_itr output

summary.test_itr

Summarize test_itr output

test_itr

Conduct hypothesis tests

Provides various statistical methods for evaluating Individualized Treatment Rules under randomized data. The provided metrics include Population Average Value (PAV), Population Average Prescription Effect (PAPE), Area Under Prescription Effect Curve (AUPEC). It also provides the tools to analyze Individualized Treatment Rules under budget constraints. Detailed reference in Imai and Li (2019) <arXiv:1905.05389>.

  • Maintainer: Michael Lingzhi Li
  • License: GPL (>= 2)
  • Last published: 2023-08-25