EkNNinit function

Initialization of parameters for the EkNN classifier

Initialization of parameters for the EkNN classifier

EkNNinit returns initial parameter values for the EkNN classifier.

EkNNinit(x, y, alpha = 0.95)

Arguments

  • x: Input matrix of size n x d, where n is the number of objects and d the number of attributes.
  • y: Vector of class lables (of length n). May be a factor, or a vector of integers from 1 to M (number of classes).
  • alpha: Parameter α\alpha.

Returns

A list with two elements:

  • gamma: Vector of parameters γk\gamma_k, of length c, the number of classes.
  • alpha: Parameter α\alpha, set to 0.95.

Details

Each parameter γk\gamma_k is set ot the inverse of the square root of the mean Euclidean distances wihin class k. Note that γk\gamma_k here is the square root of the γk\gamma_k as defined in (Zouhal and Denoeux, 1998). By default, parameter alpha is set to 0.95. This value normally does not have to be changed.

Examples

## Iris dataset data(iris) x<-iris[,1:4] y<-iris[,5] param<-EkNNinit(x,y) param

References

T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Transactions on Systems, Man and Cybernetics, 25(05):804--813, 1995.

L. M. Zouhal and T. Denoeux. An evidence-theoretic k-NN rule with parameter optimization. IEEE Transactions on Systems, Man and Cybernetics Part C, 28(2):263--271,1998.

See Also

EkNNfit, EkNNval

Author(s)

Thierry Denoeux.

  • Maintainer: Thierry Denoeux
  • License: GPL-3
  • Last published: 2023-11-09

Useful links