Initialization of parameters for the EkNN classifier
Initialization of parameters for the EkNN classifier
EkNNinit returns initial parameter values for the EkNN classifier.
EkNNinit(x, y, alpha =0.95)
Arguments
x: Input matrix of size n x d, where n is the number of objects and d the number of attributes.
y: Vector of class lables (of length n). May be a factor, or a vector of integers from 1 to M (number of classes).
alpha: Parameter α.
Returns
A list with two elements:
gamma: Vector of parameters γk, of length c, the number of classes.
alpha: Parameter α, set to 0.95.
Details
Each parameter γk is set ot the inverse of the square root of the mean Euclidean distances wihin class k. Note that γk here is the square root of the γk as defined in (Zouhal and Denoeux, 1998). By default, parameter alpha is set to 0.95. This value normally does not have to be changed.
T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Transactions on Systems, Man and Cybernetics, 25(05):804--813, 1995.
L. M. Zouhal and T. Denoeux. An evidence-theoretic k-NN rule with parameter optimization. IEEE Transactions on Systems, Man and Cybernetics Part C, 28(2):263--271,1998.