RBFfit function

Training of a radial basis function classifier

Training of a radial basis function classifier

RBFfit performs parameter optimization for a radial basis function (RBF) classifier.

RBFfit( x, y, param, lambda = 0, control = list(fnscale = -1, trace = 2, maxit = 1000), optimProto = TRUE )

Arguments

  • x: Input matrix of size n x d, where n is the number of objects and d the number of attributes.
  • y: Vector of class labels (of length n). May be a factor, or a vector of integers from 1 to M (number of classes).
  • param: Initial parameters (see RBFinit).
  • lambda: Regularization hyperparameter (default=0).
  • control: Parameters passed to function optim.
  • optimProto: Boolean. If TRUE, the prototypes are optimized (default). Otherwise, they are fixed.

Returns

A list with three elements:

  • param: Optimized network parameters.
  • loglik: Final value of the log-likelihood objective function.
  • err: Training error rate.

Details

The RBF neural network is trained by maximizing the conditional log-likelihood (or, equivalently, by minimizing the cross-entropy loss function). The optimization procedure is the BFGS algorithm implemented in function optim.

Examples

## Glass dataset data(glass) xapp<-glass$x[1:89,] yapp<-glass$y[1:89] ## Initialization param0<-RBFinit(xapp,yapp,nproto=7) ## Training fit<-RBFfit(xapp,yapp,param0,control=list(fnscale=-1,trace=2))

See Also

proDSinit, proDSval

Author(s)

Thierry Denoeux.

  • Maintainer: Thierry Denoeux
  • License: GPL-3
  • Last published: 2023-11-09

Useful links