proDSfit function

Training of the evidential neural network classifier

Training of the evidential neural network classifier

proDSfit performs parameter optimization for the evidential neural network classifier.

proDSfit( x, y, param, lambda = 1/max(as.numeric(y)), mu = 0, optimProto = TRUE, options = list(maxiter = 500, eta = 0.1, gain_min = 1e-04, disp = 10) )

Arguments

  • x: Input matrix of size n x d, where n is the number of objects and d the number of attributes.
  • y: Vector of class lables (of length n). May be a factor, or a vector of integers from 1 to M (number of classes).
  • param: Initial parameters (see link{proDSinit}).
  • lambda: Parameter of the cost function. If lambda=1, the cost function measures the error between the plausibilities and the 0-1 target values. If lambda=1/M, where M is the number of classes (default), the piginistic probabilities are considered in the cost function. If lambda=0, the beliefs are used.
  • mu: Regularization hyperparameter (default=0).
  • optimProto: Boolean. If TRUE, the prototypes are optimized (default). Otherwise, they are fixed.
  • options: A list of parameters for the optimization algorithm: maxiter (maximum number of iterations), eta (initial step of gradient variation), gain_min (minimum gain in the optimisation loop), disp (integer; if >0, intermediate results are displayed every disp iterations).

Returns

A list with three elements:

  • param: Optimized network parameters.
  • cost: Final value of the cost function.
  • err: Training error rate.

Details

If optimProto=TRUE (default), the prototypes are optimized. Otherwise, they are fixed to their initial value.

Examples

## Glass dataset data(glass) xapp<-glass$x[1:89,] yapp<-glass$y[1:89] xtst<-glass$x[90:185,] ytst<-glass$y[90:185] ## Initialization param0<-proDSinit(xapp,yapp,nproto=7) ## Training fit<-proDSfit(xapp,yapp,param0)

References

T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. on Systems, Man and Cybernetics A, 30(2):131--150, 2000.

See Also

proDSinit, proDSval

Author(s)

Thierry Denoeux.

  • Maintainer: Thierry Denoeux
  • License: GPL-3
  • Last published: 2023-11-09

Useful links