proDSinit function

Initialization of parameters for the evidential neural network classifier

Initialization of parameters for the evidential neural network classifier

proDSinit returns initial parameter values for the evidential neural network classifier.

proDSinit(x, y, nproto, nprotoPerClass = FALSE, crisp = FALSE)

Arguments

  • x: Input matrix of size n x d, where n is the number of objects and d the number of attributes.
  • y: Vector of class labels (of length n). May be a factor, or a vector of integers from 1 to M (number of classes).
  • nproto: Number of prototypes.
  • nprotoPerClass: Boolean. If TRUE, there are nproto prototypes per class. If FALSE (default), the total number of prototypes is equal to nproto.
  • crisp: Boolean. If TRUE, the prototypes have full membership to only one class. (Available only if nprotoPerClass=TRUE).

Returns

A list with four elements containing the initialized network parameters

  • alpha: Vector of length r, where r is the number of prototypes.
  • gamma: Vector of length r
  • beta: Matrix of size (r,M), where M is the number of classes.
  • W: Matrix of size (r,d), containing the prototype coordinates.

Details

The prototypes are initialized by the k-means algorithms. The initial membership values uiku_{ik} of each prototype pip_i to class ωk\omega_k are normally defined as the proportion of training samples from class ωk\omega_k in the neighborhood of prototype pip_i. If arguments crisp and nprotoPerClass are set to TRUE, the prototypes are assigned to one and only one class.

Examples

## Glass dataset data(glass) xapp<-glass$x[1:89,] yapp<-glass$y[1:89] param0<-proDSinit(xapp,yapp,nproto=7) param0

References

T. Denoeux. A neural network classifier based on Dempster-Shafer theory. IEEE Trans. on Systems, Man and Cybernetics A, 30(2):131--150, 2000.

See Also

proDSfit, proDSval

Author(s)

Thierry Denoeux.

  • Maintainer: Thierry Denoeux
  • License: GPL-3
  • Last published: 2023-11-09

Useful links