lognormgpd function

Log-Normal Bulk and GPD Tail Extreme Value Mixture Model

Log-Normal Bulk and GPD Tail Extreme Value Mixture Model

Density, cumulative distribution function, quantile function and random number generation for the extreme value mixture model with log-normal for bulk distribution upto the threshold and conditional GPD above threshold. The parameters are the log-normal mean lnmean and standard deviation lnsd, threshold u

GPD scale sigmau and shape xi and tail fraction phiu.

dlognormgpd(x, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd), sigmau = lnsd, xi = 0, phiu = TRUE, log = FALSE) plognormgpd(q, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd), sigmau = lnsd, xi = 0, phiu = TRUE, lower.tail = TRUE) qlognormgpd(p, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd), sigmau = lnsd, xi = 0, phiu = TRUE, lower.tail = TRUE) rlognormgpd(n = 1, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd), sigmau = lnsd, xi = 0, phiu = TRUE)

Arguments

  • x: quantiles
  • lnmean: mean on log scale
  • lnsd: standard deviation on log scale (positive)
  • u: threshold
  • sigmau: scale parameter (positive)
  • xi: shape parameter
  • phiu: probability of being above threshold [0,1][0, 1] or TRUE
  • log: logical, if TRUE then log density
  • q: quantiles
  • lower.tail: logical, if FALSE then upper tail probabilities
  • p: cumulative probabilities
  • n: sample size (positive integer)

Returns

dlognormgpd gives the density, plognormgpd gives the cumulative distribution function, qlognormgpd gives the quantile function and rlognormgpd gives a random sample.

Details

Extreme value mixture model combining log-normal distribution for the bulk below the threshold and GPD for upper tail.

The user can pre-specify phiu

permitting a parameterised value for the tail fraction ϕu\phi_u. Alternatively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the log-normal bulk model.

The cumulative distribution function with tail fraction ϕu\phi_u defined by the upper tail fraction of the log-normal bulk model (phiu=TRUE), upto the threshold 0<xu0 < x \le u, given by:

F(x)=H(x) F(x) = H(x)

and above the threshold x>ux > u:

F(x)=H(u)+[1H(u)]G(x) F(x) = H(u) + [1 - H(u)] G(x)

where H(x)H(x) and G(X)G(X) are the log-normal and conditional GPD cumulative distribution functions (i.e. plnorm(x, lnmean, lnsd) and pgpd(x, u, sigmau, xi)) respectively.

The cumulative distribution function for pre-specified ϕu\phi_u, upto the threshold 0<xu0 < x \le u, is given by:

F(x)=(1ϕu)H(x)/H(u) F(x) = (1 - \phi_u) H(x)/H(u)

and above the threshold x>ux > u:

F(x)=ϕu+[1ϕu]G(x) F(x) = \phi_u + [1 - \phi_u] G(x)

Notice that these definitions are equivalent when ϕu=1H(u)\phi_u = 1 - H(u).

The log-normal is defined on the positive reals, so the threshold must be positive.

See gpd for details of GPD upper tail component and dlnorm for details of log-normal bulk component.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters must be either a scalar or a vector. If vectors are provided they must all be of the same length, and the function will be evaluated for each element of vector. In the case of rlognormgpd any input vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default sample size for rlognormgpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give warning message as appropriate.

Examples

## Not run: set.seed(1) par(mfrow = c(2, 2)) x = rlognormgpd(1000) xx = seq(-1, 10, 0.01) hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10)) lines(xx, dlognormgpd(xx)) # three tail behaviours plot(xx, plognormgpd(xx), type = "l") lines(xx, plognormgpd(xx, xi = 0.3), col = "red") lines(xx, plognormgpd(xx, xi = -0.3), col = "blue") legend("bottomright", paste("xi =",c(0, 0.3, -0.3)), col=c("black", "red", "blue"), lty = 1) x = rlognormgpd(1000, u = 2, phiu = 0.2) hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10)) lines(xx, dlognormgpd(xx, u = 2, phiu = 0.2)) plot(xx, dlognormgpd(xx, u = 2, xi=0, phiu = 0.2), type = "l") lines(xx, dlognormgpd(xx, u = 2, xi=-0.2, phiu = 0.2), col = "red") lines(xx, dlognormgpd(xx, u = 2, xi=0.2, phiu = 0.2), col = "blue") legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"), col=c("black", "red", "blue"), lty = 1) ## End(Not run)

References

http://en.wikipedia.org/wiki/Log-normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http://www.ine.pt/revstat/pdf/rs120102.pdf

Solari, S. and Losada, M.A. (2004). A unified statistical model for hydrological variables including the selection of threshold for the peak over threshold method. Water Resources Research. 48, W10541.

See Also

gpd and dlnorm

Other lognormgpd: flognormgpdcon, flognormgpd, lognormgpdcon

Other lognormgpdcon: flognormgpdcon, flognormgpd, lognormgpdcon

Other normgpd: fgng, fhpd, fitmnormgpd, flognormgpd, fnormgpdcon, fnormgpd, gngcon, gng, hpdcon, hpd, itmnormgpd, lognormgpdcon, normgpdcon, normgpd

Other flognormgpd: flognormgpd

Author(s)

Yang Hu and Carl Scarrott carl.scarrott@canterbury.ac.nz