rho: Regularization coefficient shrinking the solution towards a linear model (default=0).
eps: Parameter of the loss function (if NULL, set to 0.01 times the standard deviation of y).
nu: Parameter of the loss function to avoid a division par zero (default=1e-16).
optimProto: If TRUE (default), the initial prototypes are optimized.
verbose: If TRUE (default) intermediate results are displayed.
options: Parameters of the optimization procedure (see details).
opt.rmsprop: Parameters of the RMSprop algorithm (see details).
Returns
An object of class "ENNreg" with the following components:
loss: Value of the loss function.
param: Parameter values.
K: Number of prototypes.
pred: Predictions on the training set (a list containing the prototype unit activations, the output means, variances and precisions, as well as the lower and upper expectations).
Details
If batch=TRUE, function harris from package evclust is used for optimization. Otherwise, the RMSprop minibatch learning algorithm is used. The three parameters in list options are:
maxiter: Maximum number of iterations (default: 100).
rel.error: Relative error for stopping criterion (default: 1e-4).
print: Number of iterations between two displays (default: 10).
Additional parameters for the RMSprop, used only if batch=FALSE, are contained in list opt.rmsprop. They are: '
batch_size: Minibatch size.
epsi: Global learning rate.
rho: Decay rate.
delta: Small constant to stabilize division by small numbers.
Dtmax: The algorithm stops when the loss has not decreased in the last Dtmax iterations.
Examples
# Boston datasetlibrary(MASS)X<-as.matrix(scale(Boston[,1:13]))y<-Boston[,14]set.seed(220322)n<-nrow(Boston)ntrain<-round(0.7*n)train <-sample(n,ntrain)fit <- ENNreg(X[train,],y[train],K=30)plot(y[train],fit$pred$mux,xlab="observed response",ylab="predicted response")
References
Thierry Denoeux. An evidential neural network model for regression based on random fuzzy numbers. In "Belief functions: Theory and applications (proc. of BELIEF 2022)", pages 57-66, Springer, 2022.
Thierry Denoeux. Quantifying prediction uncertainty in regression using random fuzzy sets: the ENNreg model. IEEE Transactions on Fuzzy Systems, Vol. 31, Issue 10, pages 3690-3699, 2023.