X: Input matrix of size n x p, where n is the number of objects and p the number of attributes.
y: Vector of length n containing observations of the response variable.
K: Number of prototypes.
batch: If TRUE (default), batch learning is used; otherwise, online learning is used.
folds: Vector of length n containing the folds (integers between 1 and Kfold).
Kfold: Number of folds (default=5, used only if folds is not provided).
XI: Vector of candidate values for hyperparameter xi.
RHO: Vector of candidate values for hyperparameter rho.
nstart: Number of random starts of the k-means algorithm (default: 100).
c: Multiplicative coefficient applied to scale parameter gamma (defaut: 1).
lambda: Parameter of the loss function (default=0.9).
eps: Parameter of the loss function (if NULL, fixed to 0.01 times the standard deviation of y).
nu: Parameter of the loss function to avoid a division par zero (default=1e-16).
optimProto: If TRUE (default), the initial prototypes are optimized.
verbose: If TRUE (default) intermediate results are displayed.
options: Parameters of the optimization algorithm (see ENNreg).
opt.rmsprop: Parameters of the RMSprop algorithm (see ENNreg).
Returns
A list with three components:
xi: Optimal value of xi.
rho: Optimal value of rho.
RMS: Matrix of root mean squared error values
Details
Either the folds (a vector of the same length as y, such that folds[i] equals the fold, between 1 and Kfold, containing observation i), or the number of folds must be provided. Arguments options and opt.rmsprop are passed to function ENNreg.
Examples
# Boston datasetlibrary(MASS)X<-as.matrix(scale(Boston[,1:13]))y<-Boston[,14]set.seed(220322)n<-nrow(Boston)ntrain<-round(0.7*n)train <-sample(n,ntrain)cv<-ENNreg_cv(X=X[train,],y=y[train],K=30,XI=c(0.1,1,10),RHO=c(0.1,1,10))cv$RMS
fit <- ENNreg(X[train,],y[train],K=30,xi=cv$xi,rho=cv$rho)pred<-predict(fit,newdata=X[-train,],yt=y[-train])print(pred$RMS)
References
Thierry Denoeux. An evidential neural network model for regression based on random fuzzy numbers. In "Belief functions: Theory and applications (proc. of BELIEF 2022)", pages 57-66, Springer, 2022.
Thierry Denoeux. Quantifying prediction uncertainty in regression using random fuzzy sets: the ENNreg model. IEEE Transactions on Fuzzy Systems, Vol. 31, Issue 10, pages 3690-3699, 2023.