combination_GRFN combines two Gaussian random fuzzy numbers using the generalized product-intersection rule with soft or hard normalization.
combination_GRFN(GRFN1, GRFN2, soft =TRUE)
Arguments
GRFN1: A Gaussian random fuzzy number, encoded as a list with components mu, sig and h.
GRFN2: A Gaussian random fuzzy number, encoded as a list with components mu, sig and h.
soft: If TRUE (default), the combination rule with soft normalization is used. Otherwise, hard normalization is employed.
Returns
A list with two components:
GRFN: The combined Gaussian random fuzzy number, encoded as a list with components mu, sig and h.
conflict: The degree of conflict (equal to 0 if soft==FALSE).
Examples
GRFN1<-list(mu=1,sig=1,h=2)GRFN2<-list(mu=2,sig=2,h=3)GRFN12s<-combination_GRFN(GRFN1,GRFN2)# soft normalizationGRFN12h<-combination_GRFN(GRFN1,GRFN2,soft=FALSE)# hard normalizationprint(GRFN12s)print(GRFN12h)
References
Thierry Denoeux. Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models. Fuzzy Sets and Systems, Vol. 453, Pages 1-36, 2023.