exametrika1.6.3 package

Test Theory Analysis and Biclustering

ItemEntropy

Item Entropy

ItemFit

Model Fit Functions for Items

ItemInformationFunc

IIF for 4PLM

MutualInformation

Mutual Information

nrs

Number Right Score

objective_function_IRT

Log-likelihood function used in the Maximization Step (M-Step).

OmegaCoefficient

Omega Coefficient

params_to_target

convert parameters to optimization target

passage

Passage Rate of Student

percentile

Student Percentile Ranks

ItemLift

Item Lift

ItemOdds

Item Odds

ItemReport

Generate Item Report for Non-Binary Test Data

ItemStatistics

Simple Item Statistics

ItemThreshold

Item Threshold

ItemTotalCorr

Item-Total Correlation

JCRR

Joint Correct Response Rate

JointSampleSize

Joint Sample Size

JSR

Joint Selection Rate

LCA

Latent Class Analysis

LD_param_est

LDparam set

LDB

Local Dependence Biclustering

LDLRA

Local Dependence Latent Rank Analysis

LogisticModel

Four-Parameter Logistic Model

longdataFormat

Long Format Data Conversion

LRA

Latent Rank Analysis

maxParents_penalty

Utility function for searching DAG

AlphaCoefficient

Alpha Coefficient

AlphaIfDel

Alpha Coefficient if Item removed

asymprior

Prior distribution function with guessing parameter

Biclustering

Biclustering and Ranklustering Analysis

BINET

Bicluster Network Model

BiserialCorrelation

Biserial Correlation

BitRespPtn

Binary pattern maker

BNM

Bayesian Network Model

calcFitIndices

calc Fit Indices

CCRR

Conditional Correct Response Rate

crr

Correct Response Rate

CSR

Conditional Selection Rate

CTT

Classical Test Theory

dataFormat

dataFormat

Dimensionality

Dimensionality

generate_category_labels

Generate category labels for response data

generate_start_values

generate start values for optimize

GridSearch

Grid Search for Optimal Parameters

grm_cumprob

cumulative probability of GRM

grm_iif

Item Information Function for GRM

grm_prob

Probability function for GRM

GRM

Graded Response Model (GRM)

IIF2PLM

IIF for 2PLM

IIF3PLM

IIF for 3PLM

InterItemAnalysis

Inter-Item Analysis for Psychometric Data

IRM

Infinite Relational Model

IRT

Estimating Item parameters using EM algorithm

ITBiserial

Item-Total Biserial Correlation

PhiCoefficient

Phi-Coefficient

plot.exametrika

Plot Method for Objects of Class "exametrika"

polychoric_likelihood

Calculate Polychoric Correlation Likelihood

polychoric

Polychoric Correlation

PolychoricCorrelationMatrix

Polychoric Correlation Matrix

polyserial

Polyserial Correlation

print.exametrika

Print Method for Exametrika Objects

PSD_item_params

internal functions for PSD of Item parameters

qBiNormal

bivariate normal CDF

RaschModel

Rasch Model

response_type_error

Generate Error Message for Invalid Response Type

ScoreReport

Generate Score Report for Non-Binary Test Data

slopeprior

Prior distribution function with respect to the slope.

softmax

softmax function

sscore

Standardized Score

stanine

Stanine Scores

StrLearningGA_BNM

Structure Learning for BNM by simple GA

StrLearningPBIL_BNM

Structure Learning for BNM by PBIL

StrLearningPBIL_LDLRA

Structure Learning for LDLRA by PBIL algorithm

StudentAnalysis

StudentAnalysis

TestFit

Model Fit Functions for test whole

TestFitSaturated

Model Fit Functions for saturated model

TestInformationFunc

TIF for IRT

TestResponseFunc

TRF for IRT

TestStatistics

Simple Test Statistics

tetrachoric

Tetrachoric Correlation

TetrachoricCorrelationMatrix

Tetrachoric Correlation Matrix

ThreePLM

Three-Parameter Logistic Model

TwoPLM

Two-Parameter Logistic Model

Implements comprehensive test data engineering methods as described in Shojima (2022, ISBN:978-9811699856). Provides statistical techniques for engineering and processing test data: Classical Test Theory (CTT) with reliability coefficients for continuous ability assessment; Item Response Theory (IRT) including Rasch, 2PL, and 3PL models with item/test information functions; Latent Class Analysis (LCA) for nominal clustering; Latent Rank Analysis (LRA) for ordinal clustering with automatic determination of cluster numbers; Biclustering methods including infinite relational models for simultaneous clustering of examinees and items without predefined cluster numbers; and Bayesian Network Models (BNM) for visualizing inter-item dependencies. Features local dependence analysis through LRA and biclustering, parameter estimation, dimensionality assessment, and network structure visualization for educational, psychological, and social science research.