BivPoiss function

Bivariate Poisson distribution

Bivariate Poisson distribution

Probability mass function and random generation for the bivariate Poisson distribution.

dbvpois(x, y = NULL, a, b, c, log = FALSE) rbvpois(n, a, b, c)

Arguments

  • x, y: vectors of quantiles; alternatively x may be a two-column matrix (or data.frame) and y may be omitted.
  • a, b, c: positive valued parameters.
  • log: logical; if TRUE, probabilities p are given as log(p).
  • n: number of observations. If length(n) > 1, the length is taken to be the number required.

Details

Probability mass function

f(x)=exp{(a+b+c)}axx!byy!k=0min(x,y)(xk)(yk)k!(cab)kf(x)=exp((a+b+c))(ax)/x!(by)/y!sum(choose(x,k)choose(y,k)k!(c/(ab))k) f(x) = \exp \{-(a+b+c)\} \frac{a^x}{x!} \frac{b^y}{y!} \sum_{k=0}^{\min(x,y)}{x \choose k} {y \choose k} k! \left( \frac{c}{ab} \right)^kf(x) = exp(-(a+b+c)) * (a^x)/x! * (b^y)/y! *sum(choose(x,k)*choose(y,k)*k!*(c/(a*b))^k)

Examples

x <- rbvpois(5000, 7, 8, 5) image(prop.table(table(x[,1], x[,2]))) colMeans(x)

References

Karlis, D. and Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson models. Journal of the Royal Statistical Society: Series D (The Statistician), 52(3), 381-393.

Kocherlakota, S. and Kocherlakota, K. (1992) Bivariate Discrete Distributions. New York: Dekker.

Johnson, N., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions. New York: Wiley.

Holgate, P. (1964). Estimation for the bivariate Poisson distribution. Biometrika, 51(1-2), 241-287.

Kawamura, K. (1984). Direct calculation of maximum likelihood estimator for the bivariate Poisson distribution. Kodai mathematical journal, 7(2), 211-221.

See Also

Poisson

  • Maintainer: Tymoteusz Wolodzko
  • License: GPL-2
  • Last published: 2023-11-30