Generalized extreme value distribution
Density, distribution function, quantile function and random generation for the generalized extreme value distribution.
dgev(x, mu = 0, sigma = 1, xi = 0, log = FALSE)
pgev(q, mu = 0, sigma = 1, xi = 0, lower.tail = TRUE, log.p = FALSE)
qgev(p, mu = 0, sigma = 1, xi = 0, lower.tail = TRUE, log.p = FALSE)
rgev(n, mu = 0, sigma = 1, xi = 0)
Arguments
-
x, q
: vector of quantiles.
-
mu, sigma, xi
: location, scale, and shape parameters. Scale must be positive.
-
log, log.p
: logical; if TRUE, probabilities p are given as log(p).
-
lower.tail
: logical; if TRUE (default), probabilities are P[X≤x]
otherwise, P[X>x].
-
p
: vector of probabilities.
-
n
: number of observations. If length(n) > 1
, the length is taken to be the number required.
Details
Probability density function
f(x)={σ1(1+ξσx−μ)−1/ξ−1exp(−(1+ξσx−μ)−1/ξ)σ1exp(−σx−μ)exp(−exp(−σx−μ))ξ=0ξ=0f(x)=[ifξ!=0:]1/σ∗(1+ξ∗(x−μ)/σ)−1/ξ−1∗exp(−(1+ξ∗(x−μ)/σ)−1/ξ)[else:]1/σ∗exp(−(x−μ)/σ)∗exp(−exp(−(x−μ)/σ))
Cumulative distribution function
F(x)={exp(−(1+ξσx−μ)1/ξ)exp(−exp(−σx−μ))ξ=0ξ=0F(x)=[ifξ!=0:]exp(−(1+ξ∗(x−μ)/σ)1/ξ)[else:]exp(−exp(−(x−μ)/σ))
Quantile function
F−1(p)={μ−ξσ(1−(−log(p))ξ)μ−σlog(−log(p))ξ=0ξ=0F−1(p)=[ifξ!=0:]μ−σ/ξ∗(1−(−log(p))ξ)[else:]μ−σ∗log(−log(p))
Examples
curve(dgev(x, xi = -1/2), -4, 4, col = "green", ylab = "")
curve(dgev(x, xi = 0), -4, 4, col = "red", add = TRUE)
curve(dgev(x, xi = 1/2), -4, 4, col = "blue", add = TRUE)
legend("topleft", col = c("green", "red", "blue"), lty = 1,
legend = expression(xi == -1/2, xi == 0, xi == 1/2), bty = "n")
x <- rgev(1e5, 5, 2, .5)
hist(x, 1000, freq = FALSE, xlim = c(0, 50))
curve(dgev(x, 5, 2, .5), 0, 50, col = "red", add = TRUE, n = 5000)
hist(pgev(x, 5, 2, .5))
plot(ecdf(x), xlim = c(0, 50))
curve(pgev(x, 5, 2, .5), 0, 50, col = "red", lwd = 2, add = TRUE)
References
Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.