Gompertz function

Gompertz distribution

Gompertz distribution

Density, distribution function, quantile function and random generation for the Gompertz distribution.

dgompertz(x, a = 1, b = 1, log = FALSE) pgompertz(q, a = 1, b = 1, lower.tail = TRUE, log.p = FALSE) qgompertz(p, a = 1, b = 1, lower.tail = TRUE, log.p = FALSE) rgompertz(n, a = 1, b = 1)

Arguments

  • x, q: vector of quantiles.

  • a, b: positive valued scale and location parameters.

  • log, log.p: logical; if TRUE, probabilities p are given as log(p).

  • lower.tail: logical; if TRUE (default), probabilities are P[Xx]P[X \le x]

    otherwise, P[X>x]P[X > x].

  • p: vector of probabilities.

  • n: number of observations. If length(n) > 1, the length is taken to be the number required.

Details

Probability density function

f(x)=aexp(bxab(exp(bx)1))f(x)=aexp(bxa/b(exp(bx)1)) f(x) = a \exp\left(bx - \frac{a}{b} (\exp(bx)-1)\right)f(x) = a*exp(b*x - a/b * (exp(b*x)-1))

Cumulative distribution function

F(x)=1exp(ab(exp(bx)1))F(x)=1exp(a/b(exp(bx)1)) F(x) = 1-\exp\left(-\frac{a}{b} (\exp(bx)-1)\right)F(x) = 1-exp(-a/b * (exp(b*x)-1))

Quantile function

F1(p)=1blog(1balog(1p))F1(p)=1/blog(1b/alog(1p)) F^{-1}(p) = \frac{1}{b} \log\left(1-\frac{b}{a}\log(1-p)\right)F^-1(p) = 1/b * log(1 - b/a * log(1-p))

Examples

x <- rgompertz(1e5, 5, 2) hist(x, 100, freq = FALSE) curve(dgompertz(x, 5, 2), 0, 1, col = "red", add = TRUE) hist(pgompertz(x, 5, 2)) plot(ecdf(x)) curve(pgompertz(x, 5, 2), 0, 1, col = "red", lwd = 2, add = TRUE)

References

Lenart, A. (2012). The Gompertz distribution and Maximum Likelihood Estimation of its parameters - a revision. MPIDR WORKING PAPER WP 2012-008. https://www.demogr.mpg.de/papers/working/wp-2012-008.pdf

  • Maintainer: Tymoteusz Wolodzko
  • License: GPL-2
  • Last published: 2023-11-30