HalfNormal function

Half-normal distribution

Half-normal distribution

Density, distribution function, quantile function and random generation for the half-normal distribution.

dhnorm(x, sigma = 1, log = FALSE) phnorm(q, sigma = 1, lower.tail = TRUE, log.p = FALSE) qhnorm(p, sigma = 1, lower.tail = TRUE, log.p = FALSE) rhnorm(n, sigma = 1)

Arguments

  • x, q: vector of quantiles.

  • sigma: positive valued scale parameter.

  • log, log.p: logical; if TRUE, probabilities p are given as log(p).

  • lower.tail: logical; if TRUE (default), probabilities are P[Xx]P[X \le x]

    otherwise, P[X>x]P[X > x].

  • p: vector of probabilities.

  • n: number of observations. If length(n) > 1, the length is taken to be the number required.

Details

If XX follows normal distribution centered at 0 and parametrized by scale σ\sigma, then X|X| follows half-normal distribution parametrized by scale σ\sigma. Half-t distribution with ν=\nu=\infty

degrees of freedom converges to half-normal distribution.

Examples

x <- rhnorm(1e5, 2) hist(x, 100, freq = FALSE) curve(dhnorm(x, 2), 0, 8, col = "red", add = TRUE) hist(phnorm(x, 2)) plot(ecdf(x)) curve(phnorm(x, 2), 0, 8, col = "red", lwd = 2, add = TRUE)

References

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian analysis, 1(3), 515-534.

Jacob, E. and Jayakumar, K. (2012). On Half-Cauchy Distribution and Process. International Journal of Statistika and Mathematika, 3(2), 77-81.

See Also

HalfT

  • Maintainer: Tymoteusz Wolodzko
  • License: GPL-2
  • Last published: 2023-11-30