InvChiSq function

Inverse chi-squared and scaled chi-squared distributions

Inverse chi-squared and scaled chi-squared distributions

Density, distribution function and random generation for the inverse chi-squared distribution and scaled chi-squared distribution.

dinvchisq(x, nu, tau, log = FALSE) pinvchisq(q, nu, tau, lower.tail = TRUE, log.p = FALSE) qinvchisq(p, nu, tau, lower.tail = TRUE, log.p = FALSE) rinvchisq(n, nu, tau)

Arguments

  • x, q: vector of quantiles.

  • nu: positive valued shape parameter.

  • tau: positive valued scaling parameter; if provided it returns values for scaled chi-squared distributions.

  • log, log.p: logical; if TRUE, probabilities p are given as log(p).

  • lower.tail: logical; if TRUE (default), probabilities are P[Xx]P[X \le x]

    otherwise, P[X>x]P[X > x].

  • p: vector of probabilities.

  • n: number of observations. If length(n) > 1, the length is taken to be the number required.

Details

If XX follows χ2(ν)\chi^2 (\nu) distribution, then 1/X1/X follows inverse chi-squared distribution parametrized by ν\nu. Inverse chi-squared distribution is a special case of inverse gamma distribution with parameters α=ν/2\alpha=\nu/2 and β=1/2\beta=1/2; or α=ν/2\alpha=\nu/2 and β=(ντ2)/2\beta=(\nu\tau^2)/2 for scaled inverse chi-squared distribution.

Examples

x <- rinvchisq(1e5, 20) hist(x, 100, freq = FALSE) curve(dinvchisq(x, 20), 0, 1, n = 501, col = "red", add = TRUE) hist(pinvchisq(x, 20)) plot(ecdf(x)) curve(pinvchisq(x, 20), 0, 1, n = 501, col = "red", lwd = 2, add = TRUE) # scaled x <- rinvchisq(1e5, 10, 5) hist(x, 100, freq = FALSE) curve(dinvchisq(x, 10, 5), 0, 150, n = 501, col = "red", add = TRUE) hist(pinvchisq(x, 10, 5)) plot(ecdf(x)) curve(pinvchisq(x, 10, 5), 0, 150, n = 501, col = "red", lwd = 2, add = TRUE)

See Also

Chisquare, GammaDist

  • Maintainer: Tymoteusz Wolodzko
  • License: GPL-2
  • Last published: 2023-11-30