InvGamma function

Inverse-gamma distribution

Inverse-gamma distribution

Density, distribution function and random generation for the inverse-gamma distribution.

dinvgamma(x, alpha, beta = 1, log = FALSE) pinvgamma(q, alpha, beta = 1, lower.tail = TRUE, log.p = FALSE) qinvgamma(p, alpha, beta = 1, lower.tail = TRUE, log.p = FALSE) rinvgamma(n, alpha, beta = 1)

Arguments

  • x, q: vector of quantiles.

  • alpha, beta: positive valued shape and scale parameters.

  • log, log.p: logical; if TRUE, probabilities p are given as log(p).

  • lower.tail: logical; if TRUE (default), probabilities are P[Xx]P[X \le x]

    otherwise, P[X>x]P[X > x].

  • p: vector of probabilities.

  • n: number of observations. If length(n) > 1, the length is taken to be the number required.

Details

Probability mass function

f(x)=βαxα1exp(βx)Γ(α)f(x)=(βαx(α1)exp(β/x))/Γ(α) f(x) = \frac{\beta^\alpha x^{-\alpha-1} \exp(-\frac{\beta}{x})}{\Gamma(\alpha)}f(x) = (\beta^\alpha * x^(-\alpha-1) * exp(-\beta/x)) / \Gamma(\alpha)

Cumulative distribution function

F(x)=γ(α,βx)Γ(α)F(x)=γ(α,β/x)/Γ(α) F(x) = \frac{\gamma(\alpha, \frac{\beta}{x})}{\Gamma(\alpha)}F(x) = \gamma(\alpha, \beta/x) / \Gamma(\alpha)

Examples

x <- rinvgamma(1e5, 20, 3) hist(x, 100, freq = FALSE) curve(dinvgamma(x, 20, 3), 0, 1, col = "red", add = TRUE, n = 5000) hist(pinvgamma(x, 20, 3)) plot(ecdf(x)) curve(pinvgamma(x, 20, 3), 0, 1, col = "red", lwd = 2, add = TRUE, n = 5000)

References

Witkovsky, V. (2001). Computing the distribution of a linear combination of inverted gamma variables. Kybernetika 37(1), 79-90.

Leemis, L.M. and McQueston, L.T. (2008). Univariate Distribution Relationships. American Statistician 62(1): 45-53.

See Also

GammaDist

  • Maintainer: Tymoteusz Wolodzko
  • License: GPL-2
  • Last published: 2023-11-30