Density, distribution function, quantile function and random generation for the Pareto distribution.
dpareto(x, a =1, b =1, log =FALSE)ppareto(q, a =1, b =1, lower.tail =TRUE, log.p =FALSE)qpareto(p, a =1, b =1, lower.tail =TRUE, log.p =FALSE)rpareto(n, a =1, b =1)
Arguments
x, q: vector of quantiles.
a, b: positive valued scale and location parameters.
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X≤x]
otherwise, P[X>x].
p: vector of probabilities.
n: number of observations. If length(n) > 1, the length is taken to be the number required.
Details
Probability density function
f(x)=xa+1abaf(x)=(a∗ba)/x(a+1)
Cumulative distribution function
F(x)=1−(xb)aF(x)=1−(b/x)a
Quantile function
F−1(p)=(1−p)1−abF−1(p)=b/(1−p)(1−a)
Examples
x <- rpareto(1e5,5,16)hist(x,100, freq =FALSE)curve(dpareto(x,5,16),0,200, col ="red", add =TRUE)hist(ppareto(x,5,16))plot(ecdf(x))curve(ppareto(x,5,16),0,200, col ="red", lwd =2, add =TRUE)
References
Krishnamoorthy, K. (2006). Handbook of Statistical Distributions with Applications. Chapman & Hall/CRC