ShiftGomp function

Shifted Gompertz distribution

Shifted Gompertz distribution

Density, distribution function, and random generation for the shifted Gompertz distribution.

dsgomp(x, b, eta, log = FALSE) psgomp(q, b, eta, lower.tail = TRUE, log.p = FALSE) rsgomp(n, b, eta)

Arguments

  • x, q: vector of quantiles.

  • b, eta: positive valued scale and shape parameters; both need to be positive.

  • log, log.p: logical; if TRUE, probabilities p are given as log(p).

  • lower.tail: logical; if TRUE (default), probabilities are P[Xx]P[X \le x]

    otherwise, P[X>x]P[X > x].

  • n: number of observations. If length(n) > 1, the length is taken to be the number required.

Details

If XX follows exponential distribution parametrized by scale bb and YY follows reparametrized Gumbel distribution with cumulative distribution function F(x)=exp(ηexp(bx))F(x) = exp(-\eta*exp(-b*x)) parametrized by scale bb and shape η\eta, then max(X,Y)max(X,Y) follows shifted Gompertz distribution parametrized by scale b>0b>0 and shape η>0\eta>0. The above relation is used by rsgomp function for random generation from shifted Gompertz distribution.

Probability density function

f(x)=bebxexp(ηebx)[1+η(1ebx)]f(x)=bexp(bx)exp(ηexp(bx))(1+η(1exp(bx))) f(x) = b e^{-bx} \exp(-\eta e^{-bx}) \left[1 + \eta(1 - e^{-bx})\right]f(x) = b*exp(-b*x) * exp(-\eta*exp(-b*x)) * (1 + \eta*(1 - exp(-b*x)))

Cumulative distribution function

F(x)=(1ebx)exp(ηebx)F(x)=(1exp(bx))exp(ηexp(bx)) F(x) = (1-e^{-bx}) \exp(-\eta e^{-bx})F(x) = (1-exp(-b*x)) * exp(-\eta*exp(-b*x))

Examples

x <- rsgomp(1e5, 0.4, 1) hist(x, 50, freq = FALSE) curve(dsgomp(x, 0.4, 1), 0, 30, col = "red", add = TRUE) hist(psgomp(x, 0.4, 1)) plot(ecdf(x)) curve(psgomp(x, 0.4, 1), 0, 30, col = "red", lwd = 2, add = TRUE)

References

Bemmaor, A.C. (1994). Modeling the Diffusion of New Durable Goods: Word-of-Mouth Effect Versus Consumer Heterogeneity. [In:] G. Laurent, G.L. Lilien & B. Pras. Research Traditions in Marketing. Boston: Kluwer Academic Publishers. pp. 201-223.

Jimenez, T.F. and Jodra, P. (2009). A Note on the Moments and Computer Generation of the Shifted Gompertz Distribution. Communications in Statistics - Theory and Methods, 38(1), 78-89.

Jimenez T.F. (2014). Estimation of the Parameters of the Shifted Gompertz Distribution, Using Least Squares, Maximum Likelihood and Moments Methods. Journal of Computational and Applied Mathematics, 255(1), 867-877.

  • Maintainer: Tymoteusz Wolodzko
  • License: GPL-2
  • Last published: 2023-11-30