Density, distribution function, quantile function and random generation for the truncated Poisson distribution.
dtpois(x, lambda, a =-Inf, b =Inf, log =FALSE)ptpois(q, lambda, a =-Inf, b =Inf, lower.tail =TRUE, log.p =FALSE)qtpois(p, lambda, a =-Inf, b =Inf, lower.tail =TRUE, log.p =FALSE)rtpois(n, lambda, a =-Inf, b =Inf)
Arguments
x, q: vector of quantiles.
lambda: vector of (non-negative) means.
a, b: lower and upper truncation points (a < x <= b).
log, log.p: logical; if TRUE, probabilities p are given as log(p).
lower.tail: logical; if TRUE (default), probabilities are P[X≤x]
otherwise, P[X>x].
p: vector of probabilities.
n: number of observations. If length(n) > 1, the length is taken to be the number required.
Examples
x <- rtpois(1e5,14,16)xx <- seq(-1,50)plot(prop.table(table(x)))lines(xx, dtpois(xx,14,16), col ="red")hist(ptpois(x,14,16))xx <- seq(0,50, by =0.01)plot(ecdf(x))lines(xx, ptpois(xx,14,16), col ="red", lwd =2)uu <- seq(0,1, by =0.001)lines(qtpois(uu,14,16), uu, col ="blue", lty =2)# Zero-truncated Poissonx <- rtpois(1e5,5,0)xx <- seq(-1,50)plot(prop.table(table(x)))lines(xx, dtpois(xx,5,0), col ="red")hist(ptpois(x,5,0))xx <- seq(0,50, by =0.01)plot(ecdf(x))lines(xx, ptpois(xx,5,0), col ="red", lwd =2)lines(qtpois(uu,5,0), uu, col ="blue", lty =2)
References
Plackett, R.L. (1953). The truncated Poisson distribution. Biometrics, 9(4), 485-488.
Singh, J. (1978). A characterization of positive Poisson distribution and its statistical application. SIAM Journal on Applied Mathematics, 34(3), 545-548.