TukeyLambda function

Tukey lambda distribution

Tukey lambda distribution

Quantile function, and random generation for the Tukey lambda distribution.

qtlambda(p, lambda, lower.tail = TRUE, log.p = FALSE) rtlambda(n, lambda)

Arguments

  • p: vector of probabilities.

  • lambda: shape parameter.

  • lower.tail: logical; if TRUE (default), probabilities are P[Xx]P[X \le x]

    otherwise, P[X>x]P[X > x].

  • log.p: logical; if TRUE, probabilities p are given as log(p).

  • n: number of observations. If length(n) > 1, the length is taken to be the number required.

Details

Tukey lambda distribution is a continuous probability distribution defined in terms of its quantile function. It is typically used to identify other distributions.

Quantile function:

F1(p)={1λ[pλ(1p)λ]λ0log(p1p)λ=0F1(p)=[ifλ!=0:](pλ(1p)λ)/λ[ifλ=0:]log(p/(1p)) F^{-1}(p) = \left\{\begin{array}{ll}\frac{1}{\lambda} [p^\lambda - (1-p)^\lambda] & \lambda \ne 0 \\\log(\frac{p}{1-p}) & \lambda = 0\end{array}\right.F^-1(p) = [if \lambda != 0:] (p^\lambda - (1-p)^\lambda)/\lambda[if \lambda = 0:] log(p/(1-p))

Examples

pp = seq(0, 1, by = 0.001) partmp <- par(mfrow = c(2,3)) plot(qtlambda(pp, -1), pp, type = "l", main = "lambda = -1 (Cauchy)") plot(qtlambda(pp, 0), pp, type = "l", main = "lambda = 0 (logistic)") plot(qtlambda(pp, 0.14), pp, type = "l", main = "lambda = 0.14 (normal)") plot(qtlambda(pp, 0.5), pp, type = "l", main = "lambda = 0.5 (concave)") plot(qtlambda(pp, 1), pp, type = "l", main = "lambda = 1 (uniform)") plot(qtlambda(pp, 2), pp, type = "l", main = "lambda = 2 (uniform)") hist(rtlambda(1e5, -1), freq = FALSE, main = "lambda = -1 (Cauchy)") hist(rtlambda(1e5, 0), freq = FALSE, main = "lambda = 0 (logistic)") hist(rtlambda(1e5, 0.14), freq = FALSE, main = "lambda = 0.14 (normal)") hist(rtlambda(1e5, 0.5), freq = FALSE, main = "lambda = 0.5 (concave)") hist(rtlambda(1e5, 1), freq = FALSE, main = "lambda = 1 (uniform)") hist(rtlambda(1e5, 2), freq = FALSE, main = "lambda = 2 (uniform)") par(partmp)

References

Joiner, B.L., & Rosenblatt, J.R. (1971). Some properties of the range in samples from Tukey's symmetric lambda distributions. Journal of the American Statistical Association, 66(334), 394-399.

Hastings Jr, C., Mosteller, F., Tukey, J.W., & Winsor, C.P. (1947). Low moments for small samples: a comparative study of order statistics. The Annals of Mathematical Statistics, 413-426.

  • Maintainer: Tymoteusz Wolodzko
  • License: GPL-2
  • Last published: 2023-11-30