fChange2.1.0 package

Functional Change Point Detection and Analysis

acf

ACF/PACF Functions

adaptive_bandwidth

Adaptive_bandwidth

autocorrelation

Estimate the autocorrelation function of the series

autocovariance

Estimate the autocovariance function of the series

average

Average Functions for dfts Objects

center

Generic Centering of Data

cidr

Compute (Overnight) Cumulative Intraday Returns

confidence_interval

Change Point Confidence Intervals

dfts_group

Group Generic Functions

dfts

dfts Objects

diff.dfts

Difference dfts

dim.dfts

Dimension of dfts Object

extract

Extract or Replace parts of dfts object

fChange-package

General Information for fChange

fchange

Change Point Detection

generate_brownian_bridge

Generate a Brownian Bridge Process

generate_brownian_motion

Generate a Brownian Motion Process

generate_data

Generate Functional Data

generate_far1

Generate FAR(1) Data

generate_karhunen_loeve

Generate functional data

generate_ornstein_uhlenbeck

Generate Data via Ornstein-Uhlenbeck Process

impute

Functional Imputation

kernels

Kernel Functions

kpss_test

Functional KPSS Test

lag.dfts

Lag dfts objects

long_run_covariance

Estimate Long-run Covariance Kernel

minmax

Max / Min for dfts Objects

pca_components

Functional PCA Components

pca_examination

Principal Component Exploration

pca

Generic Function for Principal Component Analysis

pipe

Pipe operator

plot.dfts

Plot dfts objects

portmanteau_tests

Functional Hypothesis Tests for Functional Data

print.dfts

Print dfts objects

projection_model

Projection-based functional data model

qqplot

QQ Plot Generic Function

quantile.dfts

Quantile dfts

sacf

Functional Spherical Autocorrelation Function

sdvar

Generic Function for Variance and Standard Deviation Computation

space_measuring_functions

Compute Spacing Measuring Functions

stat_3D

Draw 3D Geoms for ggplot2

stationarity_test

Functional Stationarity Test

summary.dfts

Summary for dfts Object

Analyze functional data and its change points. Includes functionality to store and process data, summarize and validate assumptions, characterize and perform inference of change points, and provide visualizations. Data is stored as discretely collected observations without requiring the selection of basis functions. For more details see chapter 8 of Horvath and Rice (2024) <doi:10.1007/978-3-031-51609-2>. Additional papers are forthcoming. Focused works are also included in the documentation of corresponding functions.