llh: llh = c("filter", "internal", "testing")[1], defaults to "filter".
nlminb.eval.max: maximum number of evaluations of the objective function, defaults to 200.
nlminb.iter.max: maximum number of iterations, defaults to 150.
nlminb.abs.tol: absolute tolerance, defaults to 1e-20.
nlminb.rel.tol: relative tolerance, defaults to 1e-10.
nlminb.x.tol: X tolerance, defaults to 1.5e-8.
nlminb.fscale: defaults to FALSE.
nlminb.xscale: defaulkts to FALSE.
nlminb.step.min: minimum step size, defaults to 2.2e-14.
nlminb.scale: defaults to 1.
sqp.mit: maximum number of iterations, defaults to 200.
sqp.mfv: maximum number of function evaluations, defaults to 500.
sqp.met: specifies scaling strategy:
sqp.met=1 - no scaling,
sqp.met=2 - preliminary scaling in 1st iteration (default),
sqp.met=3 - controlled scaling,
sqp.met=4 - interval scaling,
sqp.met=5 - permanent scaling in all iterations.
sqp.mec: correction for negative curvature:
sqp.mec=1 - no correction,
sqp.mec=2 - Powell correction (default).
sqp.mer: restarts after unsuccessful variable metric updates:
sqp.mer=0 - no restarts,
sqp.mer=1 - standard restart.
sqp.mes: interpolation method selection in a line search:
sqp.mes=1 - bisection,
sqp.mes=2 - two point quadratic interpolation,
sqp.mes=3 - three point quadratic interpolation,
sqp.mes=4 - three point cubic interpolation (default).
sqp.xmax: maximum stepsize, defaults to 1.0e+3.
sqp.tolx: tolerance for the change of the coordinate vector, defaults to 1.0e-16.
sqp.tolc: tolerance for the constraint violation, defaults to 1.0e-6.
sqp.tolg: tolerance for the Lagrangian function gradient, defaults to 1.0e-6.
sqp.told: defaults to 1.0e-6.
sqp.tols: defaults to 1.0e-4.
sqp.rpf: value of the penalty coefficient, default to1.0D-4. The default velue may be relatively small. Therefore, larger value, say one, can sometimes be more suitable.
lbfgsb.REPORT: the frequency of reports for the "BFGS" and "L-BFGS-B"
methods if control$trace is positive. Defaults to every 10 iterations.
lbfgsb.lmm: an integer giving the number of BFGS updates retained in the "L-BFGS-B" method, It defaults to 5.
lbfgsb.factr: controls the convergence of the "L-BFGS-B"
method. Convergence occurs when the reduction in the objective is within this factor of the machine tolerance. Default is 1e7, that is a tolerance of about 1.0e-8.
lbfgsb.pgtol: helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the projected gradient in the current search direction. This defaults to zero, when the check is suppressed.
lbfgsb.fnscale: defaults to FALSE.
lbfgsb.parscale: defaults to FALSE.
nm.ndeps: a vector of step sizes for the finite-difference approximation to the gradient, on par/parscale scale. Defaults to 1e-3.
nm.maxit: the maximum number of iterations. Defaults to 100 for the derivative-based methods, and 500 for "Nelder-Mead". For "SANN" maxit gives the total number of function evaluations. There is no other stopping criterion. Defaults to 10000.
nm.abstol: the absolute convergence tolerance. Only useful for non-negative functions, as a tolerance for reaching zero.
nm.reltol: relative convergence tolerance. The algorithm stops if it is unable to reduce the value by a factor of reltol * (abs(val) + reltol) at a step. Defaults to sqrt(.Machine$double.eps), typically about 1e-8.
nm.alpha, nm.beta, nm.gamma: scaling parameters for the "Nelder-Mead" method. alpha is the reflection factor (default 1.0), beta the contraction factor (0.5), and gamma the expansion factor (2.0).
nm.fnscale: an overall scaling to be applied to the value of fn and gr during optimization. If negative, turns the problem into a maximization problem. Optimization is performed on fn(par) / nm.fnscale.
nm.parscale: a vector of scaling values for the parameters. Optimization is performed on par/parscale and these should be comparable in the sense that a unit change in any element produces about a unit change in the scaled value.
Returns
a list
Author(s)
Diethelm Wuertz for the Rmetrics -port,
R Core Team for the 'optim' -port,
Douglas Bates and Deepayan Sarkar for the 'nlminb' -port,
Bell-Labs for the underlying PORT Library,
Ladislav Luksan for the underlying Fortran SQP Routine,
Zhu, Byrd, Lu-Chen and Nocedal for the underlying L-BFGS-B Routine.