fHMM_sdds function

Define state-dependent distributions

Define state-dependent distributions

This helper function defines state-dependent distributions.

fHMM_sdds(sdds, states) ## S3 method for class 'fHMM_sdds' print(x, ...)

Arguments

  • sdds: A character, specifying the state-dependent distribution. One of

    • "normal" (the normal distribution),
    • "lognormal" (the log-normal distribution),
    • "t" (the t-distribution),
    • "gamma" (the gamma distribution),
    • "poisson" (the Poisson distribution).

    The distribution parameters, i.e. the

    • mean mu,
    • standard deviation sigma (not for the Poisson distribution),
    • degrees of freedom df (only for the t-distribution),

    can be fixed via, e.g., "t(df = 1)" or "gamma(mu = 0, sigma = 1)". To fix different values of a parameter for different states, separate by "|", e.g. "poisson(mu = 1|2|3)".

    If hierarchy = TRUE, sdds must be a vector of length 2. The first entry corresponds to the coarse-scale layer, while the second entry corresponds to the fine-scale layer.

    By default, sdds = "normal" if hierarchy = FALSE and sdds = c("normal", "normal") if hierarchy = TRUE.

  • states: An integer, the number of states of the underlying Markov chain.

    If hierarchy = TRUE, states must be a vector of length 2. The first entry corresponds to the coarse-scale layer, while the second entry corresponds to the fine-scale layer.

    By default, states = 2 if hierarchy = FALSE and states = c(2, 2) if hierarchy = TRUE.

  • ...: Currently not used.

Returns

A list of length 1 (or 2 in the hierarchical case). Each element again is a list, containing

  • the "name" of the distribution
  • and a list "pars" of its parameters, where unknown parameters are set to NULL.
  • Maintainer: Lennart Oelschläger
  • License: GPL-3
  • Last published: 2025-03-24