get_initial_values function

Initialization of numerical likelihood optimization

Initialization of numerical likelihood optimization

This helper function generates a set of initial values for the numerical optimization of the model likelihood function.

get_initial_values( data, ncluster = 1, seed = NULL, verbose = TRUE, initial_estimate = NULL )

Arguments

  • data: An object of class fHMM_data.

  • ncluster: Set the number of clusters for parallel optimization runs to reduce optimization time. By default, ncluster = 1 (no clustering).

  • seed: Set a seed for the generation of initial values. No seed by default.

  • verbose: Set to TRUE to print progress messages.

  • initial_estimate: Optionally defines an initial estimate for the numerical likelihood optimization. Good initial estimates can improve the optimization process. Can be:

    • NULL (the default), in this case

      • applies a heuristic to calculate a good initial estimate
      • or uses the true parameter values (if available and data$controls$origin is TRUE)
    • or an object of class parUncon (i.e., a numeric of unconstrained model parameters), for example the estimate of a previously fitted model (i.e. the element model$estimate).

Returns

A list, where each element is an object of class parUncon.

  • Maintainer: Lennart Oelschläger
  • License: GPL-3
  • Last published: 2025-03-24