factoextra1.0.7 package

Extract and Visualize the Results of Multivariate Data Analyses

deprecated

Deprecated Functions

dist

Enhanced Distance Matrix Computation and Visualization

eclust

Visual enhancement of clustering analysis

eigenvalue

Extract and visualize the eigenvalues/variances of dimensions

facto_summarize

Subset and summarize the output of factor analyses

fviz

Visualizing Multivariate Analyse Outputs

fviz_add

Add supplementary data to a plot

fviz_ca

Visualize Correspondence Analysis

fviz_cluster

Visualize Clustering Results

fviz_contrib

Visualize the contributions of row/column elements

fviz_cos2

Visualize the quality of representation of rows/columns

fviz_dend

Enhanced Visualization of Dendrogram

fviz_ellipses

Draw confidence ellipses around the categories

fviz_famd

Visualize Factor Analysis of Mixed Data

fviz_hmfa

Visualize Hierarchical Multiple Factor Analysis

fviz_mca

Visualize Multiple Correspondence Analysis

fviz_mclust

Plot Model-Based Clustering Results using ggplot2

fviz_mfa

Visualize Multiple Factor Analysis

fviz_nbclust

Dertermining and Visualizing the Optimal Number of Clusters

fviz_pca

Visualize Principal Component Analysis

fviz_silhouette

Visualize Silhouette Information from Clustering

get_ca

Extract the results for rows/columns - CA

get_clust_tendency

Assessing Clustering Tendency

get_famd

Extract the results for individuals and variables - FAMD

get_hmfa

Extract the results for individuals/variables/group/partial axes - HMF...

get_mca

Extract the results for individuals/variables - MCA

get_mfa

Extract the results for individuals/variables/group/partial axes - MFA

get_pca

Extract the results for individuals/variables - PCA

hcut

Computes Hierarchical Clustering and Cut the Tree

hkmeans

Hierarchical k-means clustering

print.factoextra

Print method for an object of class factoextra

Provides some easy-to-use functions to extract and visualize the output of multivariate data analyses, including 'PCA' (Principal Component Analysis), 'CA' (Correspondence Analysis), 'MCA' (Multiple Correspondence Analysis), 'FAMD' (Factor Analysis of Mixed Data), 'MFA' (Multiple Factor Analysis) and 'HMFA' (Hierarchical Multiple Factor Analysis) functions from different R packages. It contains also functions for simplifying some clustering analysis steps and provides 'ggplot2' - based elegant data visualization.

  • Maintainer: Alboukadel Kassambara
  • License: GPL-2
  • Last published: 2020-04-01