fairmodels1.2.2 package

Flexible Tool for Bias Detection, Visualization, and Mitigation

all_cutoffs

All cutoffs

calculate_group_fairness_metrics

Calculate fairness metrics in groups

ceteris_paribus_cutoff

Ceteris paribus cutoff

choose_metric

Choose metric

confusion_matrx

Confusion matrix

disparate_impact_remover

Disparate impact remover

expand_fairness_object

Expand Fairness Object

fairness_check_regression

Fairness check regression

fairness_check

Fairness check

fairness_heatmap

Fairness heatmap

fairness_pca

Fairness PCA

fairness_radar

Fairness radar

group_matrices

Group confusion matrices

group_metric

Group metric

group_model_performance

Group model performance

metric_scores

Metric scores

performance_and_fairness

Performance and fairness

plot_all_cutoffs

Plot all cutoffs

plot_ceteris_paribus_cutoff

Ceteris paribus cutoff plot

plot_chosen_metric

Plot chosen metric

plot_density

Plot fairness object

plot_fairmodels

Plot fairmodels

plot_fairness_heatmap

Plot Heatmap

plot_fairness_object

Plot fairness object

plot_fairness_pca

Plot fairness PCA

plot_fairness_radar

Plot fairness radar

plot_fairness_regression_object

Plot fairness regression object

plot_group_metric

Plot group metric

plot_metric_scores

Plot metric scores

plot_performance_and_fairness

Plot fairness and performance

plot_stacked_barplot

Stack metrics

plot_stacked_metrics

Plot stacked Metrics

pre_process_data

Pre-process data

print_all_cutoffs

Print all cutoffs

print_ceteris_paribus_cutoff

Print ceteris paribus cutoff

print_chosen_metric

Print chosen metric

print_fairness_heatmap

Print fairness heatmap

print_fairness_object

Print Fairness Object

print_fairness_pca

Print fairness PCA

print_fairness_radar

Print fairness radar

print_fairness_regression_object

Print Fairness Regression Object

print_group_metric

Print group metric

print_metric_scores

Print metric scores data

print_performance_and_fairness

Print performance and fairness

print_stacked_metrics

Print stacked metrics

regression_metrics

Regression metrics

resample

Resample

reweight

Reweight

roc_pivot

Reject Option based Classification pivot

Measure fairness metrics in one place for many models. Check how big is model's bias towards different races, sex, nationalities etc. Use measures such as Statistical Parity, Equal odds to detect the discrimination against unprivileged groups. Visualize the bias using heatmap, radar plot, biplot, bar chart (and more!). There are various pre-processing and post-processing bias mitigation algorithms implemented. Package also supports calculating fairness metrics for regression models. Find more details in (Wiśniewski, Biecek (2021)) <doi:10.48550/arXiv.2104.00507>.

  • Maintainer: Jakub Wiśniewski
  • License: GPL-3
  • Last published: 2025-11-30