LD function

Likelihood Distance

Likelihood Distance

Compute likelihood distances between models when removing the ithi_{th} case. If there are no missing data then the GOF will often provide equivalent results. If mirt is used, then the values will be associated with the unique response patterns instead.

LD(data, model, progress = TRUE, ...) ## S3 method for class 'LD' print(x, ncases = 10, digits = 5, ...) ## S3 method for class 'LD' plot( x, y = NULL, main = "Likelihood Distance", type = c("p", "h"), ylab = "LD", absolute = FALSE, ... )

Arguments

  • data: matrix or data.frame
  • model: if a single numeric number declares number of factors to extract in exploratory factor analysis (requires complete dataset, i.e., no missing). If class(model) is a sem (semmod), or lavaan (character), then a confirmatory approach is performed instead. Finally, if the model is defined with mirt::mirt.model() then distances will be computed for categorical data with the mirt package
  • progress: logical; display the progress of the computations in the console?
  • ...: additional parameters to be passed
  • x: an object of class LD
  • ncases: number of extreme cases to display
  • digits: number of digits to round in the printed result
  • y: a NULL value ignored by the plotting function
  • main: the main title of the plot
  • type: type of plot to use, default displays points and lines
  • ylab: the y label of the plot
  • absolute: logical; use absolute values instead of deviations?

Details

Note that LD is not limited to confirmatory factor analysis and can apply to nearly any model being studied where detection of influential observations is important.

Examples

## Not run: #run all LD functions using multiple cores setCluster() #Exploratory nfact <- 3 (LDresult <- LD(holzinger, nfact)) (LDresult.outlier <- LD(holzinger.outlier, nfact)) plot(LDresult) plot(LDresult.outlier) ## add a progress meter LDresult <- LD(holzinger, nfact, progress = TRUE) #------------------------------------------------------------------- #Confirmatory with sem model <- sem::specifyModel() F1 -> Remndrs, lam11 F1 -> SntComp, lam21 F1 -> WrdMean, lam31 F2 -> MissNum, lam42 F2 -> MxdArit, lam52 F2 -> OddWrds, lam62 F3 -> Boots, lam73 F3 -> Gloves, lam83 F3 -> Hatchts, lam93 F1 <-> F1, NA, 1 F2 <-> F2, NA, 1 F3 <-> F3, NA, 1 (LDresult <- LD(holzinger, model)) (LDresult.outlier <- LD(holzinger.outlier, model)) plot(LDresult) plot(LDresult.outlier) #------------------------------------------------------------------- #Confirmatory with lavaan model <- 'F1 =~ Remndrs + SntComp + WrdMean F2 =~ MissNum + MxdArit + OddWrds F3 =~ Boots + Gloves + Hatchts' (LDresult <- LD(holzinger, model, orthogonal=TRUE)) (LDresult.outlier <- LD(holzinger.outlier, model, orthogonal=TRUE)) plot(LDresult) plot(LDresult.outlier) # categorical data with mirt library(mirt) data(LSAT7) dat <- expand.table(LSAT7) model <- mirt.model('F = 1-5') LDresult <- LD(dat, model) plot(LDresult) ## End(Not run)

References

Chalmers, R. P. & Flora, D. B. (2015). faoutlier: An R Package for Detecting Influential Cases in Exploratory and Confirmatory Factor Analysis. Applied Psychological Measurement, 39, 573-574. tools:::Rd_expr_doi("10.1177/0146621615597894")

Flora, D. B., LaBrish, C. & Chalmers, R. P. (2012). Old and new ideas for data screening and assumption testing for exploratory and confirmatory factor analysis. Frontiers in Psychology, 3, 1-21. tools:::Rd_expr_doi("10.3389/fpsyg.2012.00055")

See Also

gCD, GOF, obs.resid, robustMD, setCluster

Author(s)

Phil Chalmers rphilip.chalmers@gmail.com