Calculate the average local clustering coefficient of a graph.
metric.cluster.mean(g)
Arguments
g: The input network.
Returns
A real constant.
Details
The local clustering coefficient of a node is the ratio of the triangles connected to the node and the triples centered on the node.metric.cluster.mean() calculates the (estimated) average clustering coefficient for all nodes in graph g with a justified error.
Examples
## Not run:x <- net.erdos.renyi.gnp(n =1000, ncores =3, p =0.06)metric.cluster.mean(x)## End(Not run)
References
Wasserman, Stanley, and Katherine Faust. Social network analysis: Methods and applications. Vol. 8. Cambridge university press, 1994.