bifdPar function

Define a Bivariate Functional Parameter Object

Define a Bivariate Functional Parameter Object

Functional parameter objects are used as arguments to functions that estimate functional parameters, such as smoothing functions like smooth.basis. A bivariate functional parameter object supplies the analogous information required for smoothing bivariate data using a bivariate functional data object x(s,t)x(s,t). The arguments are the same as those for fdPar objects, except that two linear differential operator objects and two smoothing parameters must be applied, each pair corresponding to one of the arguments ss and tt of the bivariate functional data object.

bifdPar(bifdobj, Lfdobjs=int2Lfd(2), Lfdobjt=int2Lfd(2), lambdas=0, lambdat=0, estimate=TRUE)

Arguments

  • bifdobj: a bivariate functional data object.

  • Lfdobjs: either a nonnegative integer or a linear differential operator object for the first argument ss.

    If NULL, Lfdobjs depends on bifdobj[['sbasis']][['type']]:

    • bspline: Lfdobjs <- int2Lfd(max(0, norder-2)), where norder = norder(bifdobj[['sbasis']]).

    • fourier: Lfdobjs = a harmonic acceleration operator:

        `Lfdobj <- vec2Lfd(c(0,(2*pi/diff(rngs))^2,0), rngs)`
       
       where rngs = bifdobj[['sbasis']][['rangeval']].
      
    • anything else: Lfdobj <- int2Lfd(0)

  • Lfdobjt: either a nonnegative integer or a linear differential operator object for the first argument tt.

    If NULL, Lfdobjt depends on bifdobj[['tbasis']][['type']]:

    • bspline: Lfdobj <- int2Lfd(max(0, norder-2)), where norder = norder(bifdobj[['tbasis']]).

    • fourier: Lfdobj = a harmonic acceleration operator:

        `Lfdobj <- vec2Lfd(c(0,(2*pi/diff(rngt))^2,0), rngt)`
       
       where rngt = bifdobj[['tbasis']][['rangeval']].
      
    • anything else: Lfdobj <- int2Lfd(0)

  • lambdas: a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter x(s,t)x(s,t) as a function of ss..

  • lambdat: a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter x(s,t)x(s,t) as a function of tt..

  • estimate: not currently used.

Returns

a bivariate functional parameter object (i.e., an object of class bifdPar), which is a list with the following components:

  • bifd: a functional data object (i.e., with class bifd)

  • Lfdobjs: a linear differential operator object (i.e., with class Lfdobjs)

  • Lfdobjt: a linear differential operator object (i.e., with class Lfdobjt)

  • lambdas: a nonnegative real number

  • lambdat: a nonnegative real number

  • estimate: not currently used

References

Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), Functional data analysis with R and Matlab, Springer, New York.

Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.

Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.

See Also

linmod

Source

Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009) Functional Data Analysis in R and Matlab, Springer, New York.

Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.

Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York

Examples

#See the prediction of precipitation using temperature as #the independent variable in the analysis of the daily weather #data, and the analysis of the Swedish mortality data.