Obtain the coefficients component from a functional object (functional data, class fd, functional parameter, class fdPar, a functional smooth, class fdSmooth, or a Taylor spline representation, class Taylor.
## S3 method for class 'fd'coef(object,...)## S3 method for class 'fdPar'coef(object,...)## S3 method for class 'fdSmooth'coef(object,...)## S3 method for class 'fd'coefficients(object,...)## S3 method for class 'fdPar'coefficients(object,...)## S3 method for class 'fdSmooth'coefficients(object,...)
Arguments
object: An object whose functional coefficients are desired
...: other arguments
Details
Functional representations are evaluated by multiplying a basis function matrix times a coefficient vector, matrix or 3-dimensional array. (The basis function matrix contains the basis functions as columns evaluated at the evalarg values as rows.)
Returns
A numeric vector or array of the coefficients.
References
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), Functional data analysis with R and Matlab, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.
See Also
coef
fd
fdPar
smooth.basisPar
smooth.basis
Examples
#### coef.fd##bspl1.1<- create.bspline.basis(norder=1, breaks=0:1)fd.bspl1.1<- fd(0, basisobj=bspl1.1)coef(fd.bspl1.1)#### coef.basisPar ##rangeval <- c(-3,3)# set up some standard normal datax <- rnorm(50)# make sure values within the rangex[x <-3]<--2.99x[x >3]<-2.99# set up basis for W(x)basisobj <- create.bspline.basis(rangeval,11)# set up initial value for WfdobjWfd0 <- fd(matrix(0,11,1), basisobj)WfdParobj <- fdPar(Wfd0)coef(WfdParobj)#### coef.fdSmooth##girlGrowthSm <- with(growth, smooth.basisPar(argvals=age, y=hgtf, lambda=0.1)$fd)coef(girlGrowthSm)