Evaluate a monotone function defined as the indefinite integral of exp(W(t)) where W is a function defined by a basis expansion. Function W is the logarithm of the derivative of the monotone function.
argvals: A numerical vector at which function and derivative are evaluated.
Wfdobj: A functional data object.
basislist: A list containing values of basis functions.
returnMatrix: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.
Returns
A numerical vector or matrix containing the values the warping function h.
Details
This function evaluates a strictly monotone function of the form
h(x)=[D−1exp(Wfdobj)](x),
where D−1 means taking the indefinite integral. The interval over which the integration takes places is defined in the basis object in Wfdobj.
References
Ramsay, James O., Hooker, G. and Graves, S. (2009), Functional Data Analysis with R and Matlab, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.
Author(s)
J. O. Ramsay
See Also
mongrad, landmarkreg, smooth.morph
Examples
oldpar <- par(no.readonly=TRUE)## basically this example resembles part of landmarkreg.R that uses monfn.R to## estimate the warping function.## Specify the curve subject to be registeredn=21tbreaks = seq(0,2*pi, len=n)xval <- sin(tbreaks)rangeval <- range(tbreaks)## Establish a B-spline basis for the curvewbasis <- create.bspline.basis(rangeval=rangeval, breaks=tbreaks)Wfd0 <- fd(matrix(0,wbasis$nbasis,1),wbasis)WfdPar <- fdPar(Wfd0,1,1e-4)fdObj <- smooth.basis(tbreaks, xval, WfdPar)$fd
## Set the mean landmark times. Note that the objective of the warping## function is to transform the curve such that the landmarks of the curve## occur at the designated mean landmark times.## Specify the mean landmark times: tbreak[8]=2.2 and tbreaks[13]=3.76meanmarks <- c(rangeval[1], tbreaks[8], tbreaks[13], rangeval[2])## Specify landmark locations of the curve: tbreaks[6] and tbreaks[16]cmarks <- c(rangeval[1], tbreaks[6], tbreaks[16], rangeval[2])## Establish a B-basis object for the warping functionWfd <- smooth.morph(x=meanmarks, y=cmarks, ylim=rangeval, WfdPar=WfdPar)$Wfdobj
## Estimate the warping functionh = monfn(tbreaks, Wfd)## scale using a linear equation h such that h(0)=0 and h(END)=ENDb <-(rangeval[2]-rangeval[1])/(h[n]-h[1])a <- rangeval[1]- b*h[1]h <- a + b*h
plot(tbreaks, h, xlab="Time", ylab="Transformed time", type="b")par(oldpar)