Estimate the functional principal components
Carries out a functional PCA with regularization from the estimate of the covariance surface
pcaPACE(covestimate, nharm, harmfdPar, cross)
covestimate
: a list with the two named entries "cov.estimate" and "meanfd"nharm
: the number of harmonics or principal components to compute.harmfdPar
: a functional parameter object that defines the harmonic or principal component functions to be estimated.cross
: a logical value: if TRUE, take into account the cross covariance for estimating the eigen functions.an object of class "pca.fd" with these named entries:
harmonics: a functional data object for the harmonics or eigenfunctions
values: the complete set of eigenvalues
scores: NULL. Use "scoresPACE" for estimating the pca scores
varprop: a vector giving the proportion of variance explained by each eigenfunction
meanfd: a functional data object giving the mean function
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), Functional data analysis with R and Matlab, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.
Yao, F., Mueller, H.G., Wang, J.L. (2005), Functional data analysis for sparse longitudinal data, J. American Statistical Association, 100, 577-590.