Stability Analysis for Principle Differential Analysis
Stability Analysis for Principle Differential Analysis
Overlays the results of a univariate, second-order principal differential analysis on a bifurcation diagram to demonstrate stability.
pda.overlay(pdaList,nfine=501,ncoarse=11,...)
Arguments
pdaList: a list object returned by pda.fd.
nfine: number of plotting points to use.
ncoarse: number of time markers to place along the plotted curve.
...: other arguments for 'plot'.
Details
Overlays a bivariate plot of the functional parameters in a univariate second-order principal differential analysis on a bifurcation diagram.
Returns
None.
References
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), Functional data analysis with R and Matlab, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York.
See Also
pda.fd
plot.pda.fd
eigen.pda
Examples
oldpar <- par(no.readonly=TRUE)# This example looks at a principal differential analysis of the lip data# in Ramsay and Silverman (2005).# First smooth the datalipfd <- smooth.basisPar(liptime, lip,6, Lfdobj=int2Lfd(4), lambda=1e-12)$fd
names(lipfd$fdnames)<- c("time(seconds)","replications","mm")# Now we'll set up functional parameter objects for the beta coefficients.lipbasis <- lipfd$basis
lipfd0 <- fd(matrix(0,lipbasis$nbasis,1),lipbasis)lipfdPar <- fdPar(lipfd0,2,0)bwtlist <- list(lipfdPar,lipfdPar)xfdlist <- list(lipfd)# Call pdapdaList <- pda.fd(xfdlist, bwtlist)# And plot the overlaypda.overlay(pdaList,lwd=2,cex.lab=1.5,cex.axis=1.5)par(oldpar)