pipe-sine-boa function

Simulated sine, pipe, and gaussian mixture

Simulated sine, pipe, and gaussian mixture

Simulated sine and pipe data for calculating optimisation features. Each dataset has 1000 observations and the last two columns contain the intended structure with the rest being noise. data

Format

An object of class matrix (inherits from array) with 1000 rows and 6 columns.

An object of class matrix (inherits from array) with 1000 rows and 8 columns.

An object of class matrix (inherits from array) with 1000 rows and 6 columns.

An object of class matrix (inherits from array) with 1000 rows and 8 columns.

An object of class matrix (inherits from array) with 1000 rows and 10 columns.

An object of class matrix (inherits from array) with 1000 rows and 12 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 1000 rows and 10 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 1000 rows and 5 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 1000 rows and 6 columns.

sine1000 sine1000_8d pipe1000 pipe1000_8d pipe1000_10d pipe1000_12d boa boa5 boa6

Examples

library(ggplot2) library(tidyr) library(dplyr) boa %>% pivot_longer(cols = x1:x10, names_to = "var", values_to = "value") %>% mutate(var = forcats::fct_relevel(as.factor(var), paste0("x", 1:10))) %>% ggplot(aes(x = value)) + geom_density() + facet_wrap(vars(var)) sine1000 |> ggplot(aes(x = V5, y = V6)) + geom_point() + theme(aspect.ratio = 1) pipe1000_8d |> ggplot(aes(x = V5, y = V6)) + geom_point() + theme(aspect.ratio = 1) pipe1000_8d |> ggplot(aes(x = V7, y = V8)) + geom_point() + theme(aspect.ratio = 1)
  • Maintainer: H. Sherry Zhang
  • License: MIT + file LICENSE
  • Last published: 2024-06-23