Exponential smoothing twists probabilities by giving relatively more weight to recent observations at an exponential rate.
exp_decay(x, lambda)## Default S3 method:exp_decay(x, lambda)## S3 method for class 'numeric'exp_decay(x, lambda)## S3 method for class 'matrix'exp_decay(x, lambda)## S3 method for class 'ts'exp_decay(x, lambda)## S3 method for class 'xts'exp_decay(x, lambda)## S3 method for class 'data.frame'exp_decay(x, lambda)## S3 method for class 'tbl'exp_decay(x, lambda)
Arguments
x: An univariate or a multivariate distribution.
lambda: A double for the decay parameter.
Returns
A numerical vector of class ffp with the new probabilities distribution.
Details
The half-life is linked with the lambda parameter as follows:
HL = log(2) / lambda.
For example: log(2) / 0.0166 is approximately 42. So, a parameter lambda of 0.0166 can be associated with a half-life of two-months (21 * 2).
Examples
library(ggplot2)# long half_lifelong_hl <- exp_decay(EuStockMarkets,0.001)long_hl
autoplot(long_hl)+ scale_color_viridis_c()# short half_lifeshort_hl <- exp_decay(EuStockMarkets,0.015)short_hl
autoplot(short_hl)+ scale_color_viridis_c()