exp_decay function

Full Information by Exponential Decay

Full Information by Exponential Decay

Exponential smoothing twists probabilities by giving relatively more weight to recent observations at an exponential rate.

exp_decay(x, lambda) ## Default S3 method: exp_decay(x, lambda) ## S3 method for class 'numeric' exp_decay(x, lambda) ## S3 method for class 'matrix' exp_decay(x, lambda) ## S3 method for class 'ts' exp_decay(x, lambda) ## S3 method for class 'xts' exp_decay(x, lambda) ## S3 method for class 'data.frame' exp_decay(x, lambda) ## S3 method for class 'tbl' exp_decay(x, lambda)

Arguments

  • x: An univariate or a multivariate distribution.
  • lambda: A double for the decay parameter.

Returns

A numerical vector of class ffp with the new probabilities distribution.

Details

The half-life is linked with the lambda parameter as follows:

  • HL = log(2) / lambda.

For example: log(2) / 0.0166 is approximately 42. So, a parameter lambda of 0.0166 can be associated with a half-life of two-months (21 * 2).

Examples

library(ggplot2) # long half_life long_hl <- exp_decay(EuStockMarkets, 0.001) long_hl autoplot(long_hl) + scale_color_viridis_c() # short half_life short_hl <- exp_decay(EuStockMarkets, 0.015) short_hl autoplot(short_hl) + scale_color_viridis_c()

See Also

crisp kernel_normal half_life

  • Maintainer: Bernardo Reckziegel
  • License: MIT + file LICENSE
  • Last published: 2022-09-29