Historical realizations receive a weight proportional to their distance from a target mean.
kernel_normal(x, mean, sigma)## Default S3 method:kernel_normal(x, mean, sigma)## S3 method for class 'numeric'kernel_normal(x, mean, sigma)## S3 method for class 'matrix'kernel_normal(x, mean, sigma)## S3 method for class 'ts'kernel_normal(x, mean, sigma)## S3 method for class 'xts'kernel_normal(x, mean, sigma)## S3 method for class 'tbl_df'kernel_normal(x, mean, sigma)## S3 method for class 'data.frame'kernel_normal(x, mean, sigma)
Arguments
x: An univariate or a multivariate distribution.
mean: A numeric vector in which the kernel should be centered.
sigma: The uncertainty (volatility) around the mean.
Returns
A numerical vector of class ffp with the new probabilities distribution.
Examples
library(ggplot2)ret <- diff(log(EuStockMarkets[,1]))mean <--0.01# scenarios around -1%sigma <- var(diff(ret))kn <- kernel_normal(ret, mean, sigma)kn
autoplot(kn)+ scale_color_viridis_c()# A larger sigma spreads out the distributionsigma <- var(diff(ret))/0.05kn <- kernel_normal(ret, mean, sigma)autoplot(kn)+ scale_color_viridis_c()