view_on_covariance function

Views on Covariance Matrix

Views on Covariance Matrix

Helper to construct views on variance-covariance matrix.

view_on_covariance(x, mean, sigma) ## Default S3 method: view_on_covariance(x, mean, sigma) ## S3 method for class 'matrix' view_on_covariance(x, mean, sigma) ## S3 method for class 'xts' view_on_covariance(x, mean, sigma) ## S3 method for class 'tbl_df' view_on_covariance(x, mean, sigma)

Arguments

  • x: An univariate or a multivariate distribution.
  • mean: A double for the location parameter of the series in x.
  • sigma: A matrix for the target variance-covariance parameter of the series in x.

Returns

A list of the view class.

Examples

library(ggplot2) # Invariant (stationarity) ret <- diff(log(EuStockMarkets)) # Expectations for location and dispersion parameters mean <- colMeans(ret) # No active expectations for returns cor <- matrix(0, ncol = 4, nrow = 4) # diagonal covariance matrix diag(cor) <- 1 # diagonal covariance matrix sds <- apply(ret, 2, sd) # diagonal covariance matrix covs <- diag(sds) %*% cor %*% diag(sds) ## diagonal covariance matrix # prior probabilities (usually equal weight scheme) prior <- rep(1 / nrow(ret), nrow(ret)) # Views views <- view_on_covariance(x = ret, mean = mean, sigma = covs) views # Optimization ep <- entropy_pooling(p = prior, Aeq = views$Aeq, beq = views$beq, solver = "nlminb") autoplot(ep) # original covariance matrix stats::cov(ret) # Posterior covariance matrix ffp_moments(x = ret, p = ep)$sigma
  • Maintainer: Bernardo Reckziegel
  • License: MIT + file LICENSE
  • Last published: 2022-09-29