EstMGFBetaBin function

Estimating the shape parameters a and b for Beta-Binomial Distribution

Estimating the shape parameters a and b for Beta-Binomial Distribution

The functions will estimate the shape parameters using the maximum log likelihood method and moment generating function method for the Beta-Binomial distribution when the binomial random variables and corresponding frequencies are given.

EstMGFBetaBin(x,freq)

Arguments

  • x: vector of binomial random variables.
  • freq: vector of frequencies.

Returns

The output of EstMGFBetaBin will produce the class mgf format consisting

a shape parameter of beta distribution representing for alpha

b shape parameter of beta distribution representing for beta

min Negative loglikelihood value

AIC AIC value

call the inputs for the function

Methods print, summary, coef and AIC can be used to extract specific outputs.

Details

a,b>0 a,b > 0 x=0,1,2,... x = 0,1,2,... freq0 freq \ge 0

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Examples

No.D.D <- 0:7 #assigning the random variables Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies #estimating the parameters using maximum log likelihood value and assigning it estimate <- EstMLEBetaBin(No.D.D,Obs.fre.1,a=0.1,b=0.1) bbmle::coef(estimate) #extracting the parameters #estimating the parameters using moment generating function methods results <- EstMGFBetaBin(No.D.D,Obs.fre.1) # extract the estimated parameters and summary coef(results) summary(results) AIC(results) #show the AIC value

References

\insertRef young2008poolingfitODBOD

\insertRef trenkler1996continuousfitODBOD

\insertRef hughes1993usingfitODBOD

See Also

mle2