Estimating the shape parameters a and b for Beta-Binomial Distribution
Estimating the shape parameters a and b for Beta-Binomial Distribution
The functions will estimate the shape parameters using the maximum log likelihood method and moment generating function method for the Beta-Binomial distribution when the binomial random variables and corresponding frequencies are given.
EstMGFBetaBin(x,freq)
Arguments
x: vector of binomial random variables.
freq: vector of frequencies.
Returns
The output of EstMGFBetaBin will produce the class mgf format consisting
a shape parameter of beta distribution representing for alpha
b shape parameter of beta distribution representing for beta
min Negative loglikelihood value
AIC AIC value
call the inputs for the function
Methods print, summary, coef and AIC can be used to extract specific outputs.
Details
a,b>0x=0,1,2,...freq≥0
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Examples
No.D.D <-0:7#assigning the random variablesObs.fre.1<- c(47,54,43,40,40,41,39,95)#assigning the corresponding frequencies#estimating the parameters using maximum log likelihood value and assigning itestimate <- EstMLEBetaBin(No.D.D,Obs.fre.1,a=0.1,b=0.1)bbmle::coef(estimate)#extracting the parameters#estimating the parameters using moment generating function methodsresults <- EstMGFBetaBin(No.D.D,Obs.fre.1)# extract the estimated parameters and summarycoef(results)summary(results)AIC(results)#show the AIC value