EstMLEGHGBB function

Estimating the shape parameters a,b and c for Gaussian Hypergeometric Generalized Beta Binomial Distribution

Estimating the shape parameters a,b and c for Gaussian Hypergeometric Generalized Beta Binomial Distribution

The function will estimate the shape parameters using the maximum log likelihood method for the Gaussian Hypergeometric Generalized Beta Binomial distribution when the binomial random variables and corresponding frequencies are given.

EstMLEGHGBB(x,freq,a,b,c,...)

Arguments

  • x: vector of binomial random variables.
  • freq: vector of frequencies.
  • a: single value for shape parameter alpha representing a.
  • b: single value for shape parameter beta representing b.
  • c: single value for shape parameter lambda representing c.
  • ...: mle2 function inputs except data and estimating parameter.

Returns

EstMLEGHGBB here is used as a wrapper for the mle2 function of bbmle package therefore output is of class of mle2.

Details

0<a,b,c 0 < a,b,c x=0,1,2,... x = 0,1,2,... freq0 freq \ge 0

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Examples

No.D.D <- 0:7 #assigning the random variables Obs.fre.1 <- c(47,54,43,40,40,41,39,95) #assigning the corresponding frequencies #estimating the parameters using maximum log likelihood value and assigning it parameters <- EstMLEGHGBB(No.D.D,Obs.fre.1,a=0.1,b=0.2,c=0.5) bbmle::coef(parameters) #extracting the parameters

References

\insertRef rodriguez2007generalizationfitODBOD

\insertRef pearson2009computationfitODBOD

See Also

hypergeo_powerseries


mle2