These functions provide the ability for generating probability function values and cumulative probability function values for the Beta-Binomial Distribution.
dBetaBin(x,n,a,b)
Arguments
x: vector of binomial random variables.
n: single value for no of binomial trials.
a: single value for shape parameter alpha representing as a.
b: single value for shape parameter beta representing as b.
Returns
The output of dBetaBin gives a list format consisting
pdf probability function values in vector form.
mean mean of the Beta-Binomial Distribution.
var variance of the Beta-Binomial Distribution.
over.dis.para over dispersion value of the Beta-Binomial Distribution.
Details
Mixing Beta distribution with Binomial distribution will create the Beta-Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
#plotting the random variables and probability valuescol <- rainbow(5)a <- c(1,2,5,10,0.2)plot(0,0,main="Beta-binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))for(i in1:5){lines(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)points(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)}dBetaBin(0:10,10,4,.2)$pdf #extracting the pdf valuesdBetaBin(0:10,10,4,.2)$mean #extracting the meandBetaBin(0:10,10,4,.2)$var #extracting the variancedBetaBin(0:10,10,4,.2)$over.dis.para #extracting the over dispersion value#plotting the random variables and cumulative probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))for(i in1:4){lines(0:10,pBetaBin(0:10,10,a[i],a[i]),col = col[i])points(0:10,pBetaBin(0:10,10,a[i],a[i]),col = col[i])}pBetaBin(0:10,10,4,.2)#acquiring the cumulative probability values