dBetaBin function

Beta-Binomial Distribution

Beta-Binomial Distribution

These functions provide the ability for generating probability function values and cumulative probability function values for the Beta-Binomial Distribution.

dBetaBin(x,n,a,b)

Arguments

  • x: vector of binomial random variables.
  • n: single value for no of binomial trials.
  • a: single value for shape parameter alpha representing as a.
  • b: single value for shape parameter beta representing as b.

Returns

The output of dBetaBin gives a list format consisting

pdf probability function values in vector form.

mean mean of the Beta-Binomial Distribution.

var variance of the Beta-Binomial Distribution.

over.dis.para over dispersion value of the Beta-Binomial Distribution.

Details

Mixing Beta distribution with Binomial distribution will create the Beta-Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.

The cumulative probability function is the summation of probability function values.

PBetaBin(x)=(nx)B(a+x,n+bx)B(a,b) P_{BetaBin}(x)= {n \choose x} \frac{B(a+x,n+b-x)}{B(a,b)} a,b>0 a,b > 0 x=0,1,2,3,...n x = 0,1,2,3,...n n=1,2,3,... n = 1,2,3,...

The mean, variance and over dispersion are denoted as

EBetaBin[x]=naa+b E_{BetaBin}[x]= \frac{na}{a+b} VarBetaBin[x]=(nab)(a+b)2(a+b+n)(a+b+1) Var_{BetaBin}[x]= \frac{(nab)}{(a+b)^2} \frac{(a+b+n)}{(a+b+1)} overdispersion=1a+b+1 over dispersion= \frac{1}{a+b+1}

Defined as B(a,b) is the beta function.

Examples

#plotting the random variables and probability values col <- rainbow(5) a <- c(1,2,5,10,0.2) plot(0,0,main="Beta-binomial probability function graph",xlab="Binomial random variable", ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5)) for (i in 1:5) { lines(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85) points(0:10,dBetaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16) } dBetaBin(0:10,10,4,.2)$pdf #extracting the pdf values dBetaBin(0:10,10,4,.2)$mean #extracting the mean dBetaBin(0:10,10,4,.2)$var #extracting the variance dBetaBin(0:10,10,4,.2)$over.dis.para #extracting the over dispersion value #plotting the random variables and cumulative probability values col <- rainbow(4) a <- c(1,2,5,10) plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable", ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1)) for (i in 1:4) { lines(0:10,pBetaBin(0:10,10,a[i],a[i]),col = col[i]) points(0:10,pBetaBin(0:10,10,a[i],a[i]),col = col[i]) } pBetaBin(0:10,10,4,.2) #acquiring the cumulative probability values

References

\insertRef young2008poolingfitODBOD

\insertRef trenkler1996continuousfitODBOD

\insertRef hughes1993usingfitODBOD