These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for Gamma Distribution bounded between [0,1].
dGAMMA(p,c,l)
Arguments
p: vector of probabilities.
c: single value for shape parameter c.
l: single value for shape parameter l.
Returns
The output of dGAMMA gives a list format consisting
pdf probability density values in vector form.
mean mean of the Gamma distribution.
var variance of Gamma distribution.
Details
The probability density function and cumulative density function of a unit bounded Gamma distribution with random variable P are given by
gP(p)=γ(l)clpc−1[ln(1/p)]l−1
; 0≤p≤1
GP(p)=γ(l)Ig(l,cln(1/p))
; 0≤p≤1
l,c>0
The mean the variance are denoted by
E[P]=(c+1c)lvar[P]=(c+2c)l−(c+1c)2l
The moments about zero is denoted as
E[Pr]=(c+rc)l
r=1,2,3,...
Defined as γ(l) is the gamma function Defined as Ig(l,cln(1/p))=∫0cln(1/p)tl−1e−tdt is the Lower incomplete gamma function
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Examples
#plotting the random variables and probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,4))for(i in1:4){lines(seq(0,1,by=0.01),dGAMMA(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])}dGAMMA(seq(0,1,by=0.01),5,6)$pdf #extracting the pdf valuesdGAMMA(seq(0,1,by=0.01),5,6)$mean #extracting the meandGAMMA(seq(0,1,by=0.01),5,6)$var #extracting the variance#plotting the random variables and cumulative probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))for(i in1:4){lines(seq(0,1,by=0.01),pGAMMA(seq(0,1,by=0.01),a[i],a[i]),col = col[i])}pGAMMA(seq(0,1,by=0.01),5,6)#acquiring the cumulative probability valuesmazGAMMA(1.4,5,6)#acquiring the moment about zero valuesmazGAMMA(2,5,6)-mazGAMMA(1,5,6)^2#acquiring the variance for a=5,b=6#only the integer value of moments is taken here because moments cannot be decimalmazGAMMA(1.9,5.5,6)