dGBeta1 function

Generalized Beta Type-1 Distribution

Generalized Beta Type-1 Distribution

These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Generalized Beta Type-1 Distribution bounded between [0,1].

dGBeta1(p,a,b,c)

Arguments

  • p: vector of probabilities.
  • a: single value for shape parameter alpha representing as a.
  • b: single value for shape parameter beta representing as b.
  • c: single value for shape parameter gamma representing as c.

Returns

The output of dGBeta1 gives a list format consisting

pdf probability density values in vector form.

mean mean of the Generalized Beta Type-1 Distribution.

var variance of the Generalized Beta Type-1 Distribution.

Details

The probability density function and cumulative density function of a unit bounded Generalized Beta Type-1 Distribution with random variable P are given by

gP(p)=cB(a,b)pac1(1pc)b1 g_{P}(p)= \frac{c}{B(a,b)} p^{ac-1} (1-p^c)^{b-1}

; 0p10 \le p \le 1

GP(p)=pacaB(a,b)2F1(a,1b;pc;a+1) G_{P}(p)= \frac{p^{ac}}{aB(a,b)} 2F1(a,1-b;p^c;a+1)

0p10 \le p \le 1

a,b,c>0 a,b,c > 0

The mean and the variance are denoted by

E[P]=B(a+b,1c)B(a,1c) E[P]= \frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})} var[P]=B(a+b,2c)B(a,2c)(B(a+b,1c)B(a,1c))2 var[P]= \frac{B(a+b,\frac{2}{c})}{B(a,\frac{2}{c})}-(\frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})})^2

The moments about zero is denoted as

E[Pr]=B(a+b,rc)B(a,rc) E[P^r]= \frac{B(a+b,\frac{r}{c})}{B(a,\frac{r}{c})}

r=1,2,3,....r = 1,2,3,....

Defined as B(a,b)B(a,b) is Beta function. Defined as 2F1(a,b;c;d)2F1(a,b;c;d) is Gaussian Hypergeometric function.

NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.

Examples

#plotting the random variables and probability values col <- rainbow(5) a <- c(.1,.2,.3,1.5,2.15) plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values", xlim = c(0,1),ylim = c(0,10)) for (i in 1:5) { lines(seq(0,1,by=0.001),dGBeta1(seq(0,1,by=0.001),a[i],1,2*a[i])$pdf,col = col[i]) } dGBeta1(seq(0,1,by=0.01),2,3,1)$pdf #extracting the pdf values dGBeta1(seq(0,1,by=0.01),2,3,1)$mean #extracting the mean dGBeta1(seq(0,1,by=0.01),2,3,1)$var #extracting the variance pGBeta1(0.04,2,3,4) #acquiring the cdf values for a=2,b=3,c=4 mazGBeta1(1.4,3,2,2) #acquiring the moment about zero values mazGBeta1(2,3,2,2)-mazGBeta1(1,3,2,2)^2 #acquiring the variance for a=3,b=2,c=2 #only the integer value of moments is taken here because moments cannot be decimal mazGBeta1(3.2,3,2,2)

References

\insertRef manoj2013mcdonaldfitODBOD

\insertRef janiffer2014estimatingfitODBOD

\insertRef roozegar2017mcdonaldfitODBOD