These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Generalized Beta Type-1 Distribution bounded between [0,1].
dGBeta1(p,a,b,c)
Arguments
p: vector of probabilities.
a: single value for shape parameter alpha representing as a.
b: single value for shape parameter beta representing as b.
c: single value for shape parameter gamma representing as c.
Returns
The output of dGBeta1 gives a list format consisting
pdf probability density values in vector form.
mean mean of the Generalized Beta Type-1 Distribution.
var variance of the Generalized Beta Type-1 Distribution.
Details
The probability density function and cumulative density function of a unit bounded Generalized Beta Type-1 Distribution with random variable P are given by
Defined as B(a,b) is Beta function. Defined as 2F1(a,b;c;d) is Gaussian Hypergeometric function.
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Examples
#plotting the random variables and probability valuescol <- rainbow(5)a <- c(.1,.2,.3,1.5,2.15)plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,10))for(i in1:5){lines(seq(0,1,by=0.001),dGBeta1(seq(0,1,by=0.001),a[i],1,2*a[i])$pdf,col = col[i])}dGBeta1(seq(0,1,by=0.01),2,3,1)$pdf #extracting the pdf valuesdGBeta1(seq(0,1,by=0.01),2,3,1)$mean #extracting the meandGBeta1(seq(0,1,by=0.01),2,3,1)$var #extracting the variancepGBeta1(0.04,2,3,4)#acquiring the cdf values for a=2,b=3,c=4mazGBeta1(1.4,3,2,2)#acquiring the moment about zero valuesmazGBeta1(2,3,2,2)-mazGBeta1(1,3,2,2)^2#acquiring the variance for a=3,b=2,c=2#only the integer value of moments is taken here because moments cannot be decimalmazGBeta1(3.2,3,2,2)