Gaussian Hypergeometric Generalized Beta Binomial Distribution
Gaussian Hypergeometric Generalized Beta Binomial Distribution
These functions provide the ability for generating probability function values and cumulative probability function values for the Gaussian Hypergeometric Generalized Beta Binomial distribution.
dGHGBB(x,n,a,b,c)
Arguments
x: vector of binomial random variables.
n: single value for no of binomial trials.
a: single value for shape parameter alpha value representing a.
b: single value for shape parameter beta value representing b.
c: single value for shape parameter lambda value representing c.
Returns
The output of dGHGBB gives a list format consisting
pdf probability function values in vector form.
mean mean of Gaussian Hypergeometric Generalized Beta Binomial Distribution.
var variance of Gaussian Hypergeometric Generalized Beta Binomial Distribution.
over.dis.para over dispersion value of Gaussian Hypergeometric Generalized Beta Binomial Distribution.
Details
Mixing Gaussian Hypergeometric Generalized Beta distribution with Binomial distribution will create the Gaussian Hypergeometric Generalized Beta Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
Defined as B(a,b) is the beta function. Defined as 2F1(a,b;c;d) is the Gaussian Hypergeometric function
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Examples
#plotting the random variables and probability valuescol <- rainbow(6)a <- c(.1,.2,.3,1.5,2.1,3)plot(0,0,main="GHGBB probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,7),ylim = c(0,0.9))for(i in1:6){lines(0:7,dGHGBB(0:7,7,1+a[i],0.3,1+a[i])$pdf,col = col[i],lwd=2.85)points(0:7,dGHGBB(0:7,7,1+a[i],0.3,1+a[i])$pdf,col = col[i],pch=16)}dGHGBB(0:7,7,1.3,0.3,1.3)$pdf #extracting the pdf valuesdGHGBB(0:7,7,1.3,0.3,1.3)$mean #extracting the meandGHGBB(0:7,7,1.3,0.3,1.3)$var #extracting the variancedGHGBB(0:7,7,1.3,0.3,1.3)$over.dis.par #extracting the over dispersion value#plotting the random variables and cumulative probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,7),ylim = c(0,1))for(i in1:4){lines(0:7,pGHGBB(0:7,7,1+a[i],0.3,1+a[i]),col = col[i])points(0:7,pGHGBB(0:7,7,1+a[i],0.3,1+a[i]),col = col[i])}pGHGBB(0:7,7,1.3,0.3,1.3)#acquiring the cumulative probability values