These functions provide the ability for generating probability density values, cumulative probability density values and moment about zero values for the Kumaraswamy Distribution bounded between [0,1].
dKUM(p,a,b)
Arguments
p: vector of probabilities.
a: single value for shape parameter alpha representing as a.
b: single value for shape parameter beta representing as b.
Returns
The output of dKUM gives a list format consisting
pdf probability density values in vector form.
mean mean of the Kumaraswamy distribution.
var variance of the Kumaraswamy distribution.
Details
The probability density function and cumulative density function of a unit bounded Kumaraswamy Distribution with random variable P are given by
gP(p)=abpa−1(1−pa)b−1
; 0≤p≤1
GP(p)=1−(1−pa)b
; 0≤p≤1
a,b>0
The mean and the variance are denoted by
E[P]=bB(1+a1,b)var[P]=bB(1+a2,b)−(bB(1+a1,b))2
The moments about zero is denoted as
E[Pr]=bB(1+ar,b)
r=1,2,3,...
Defined as B(a,b) is the beta function.
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Examples
#plotting the random variables and probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Probability density graph",xlab="Random variable",ylab="Probability density values",xlim = c(0,1),ylim = c(0,6))for(i in1:4){lines(seq(0,1,by=0.01),dKUM(seq(0,1,by=0.01),a[i],a[i])$pdf,col = col[i])}dKUM(seq(0,1,by=0.01),2,3)$pdf #extracting the probability valuesdKUM(seq(0,1,by=0.01),2,3)$mean #extracting the meandKUM(seq(0,1,by=0.01),2,3)$var #extracting the variance#plotting the random variables and cumulative probability valuescol <- rainbow(4)a <- c(1,2,5,10)plot(0,0,main="Cumulative density graph",xlab="Random variable",ylab="Cumulative density values",xlim = c(0,1),ylim = c(0,1))for(i in1:4){lines(seq(0,1,by=0.01),pKUM(seq(0,1,by=0.01),a[i],a[i]),col = col[i])}pKUM(seq(0,1,by=0.01),2,3)#acquiring the cumulative probability valuesmazKUM(1.4,3,2)#acquiring the moment about zero valuesmazKUM(2,2,3)-mazKUM(1,2,3)^2#acquiring the variance for a=2,b=3#only the integer value of moments is taken here because moments cannot be decimalmazKUM(1.9,5.5,6)