These functions provide the ability for generating probability function values and cumulative probability function values for the Kumaraswamy Binomial Distribution.
dKumBin(x,n,a,b,it=25000)
Arguments
x: vector of binomial random variables
n: single value for no of binomial trial
a: single value for shape parameter alpha representing a
b: single value for shape parameter beta representing b
it: number of iterations to converge as a proper probability function replacing infinity
Returns
The output of dKumBin gives a list format consisting
pdf probability function values in vector form.
mean mean of the Kumaraswamy Binomial Distribution.
var variance of the Kumaraswamy Binomial Distribution.
over.dis.para over dispersion value of the Kumaraswamy Distribution.
Details
Mixing Kumaraswamy distribution with Binomial distribution will create the Kumaraswamy Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
NOTE : If input parameters are not in given domain conditions necessary error messages will be provided to go further.
Examples
## Not run:#plotting the random variables and probability valuescol <- rainbow(5)a <- c(1,2,5,10,.85)plot(0,0,main="Kumaraswamy binomial probability function graph",xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))for(i in1:5){lines(0:10,dKumBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)points(0:10,dKumBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)}## End(Not run)dKumBin(0:10,10,4,2)$pdf #extracting the pdf valuesdKumBin(0:10,10,4,2)$mean #extracting the meandKumBin(0:10,10,4,2)$var #extracting the variancedKumBin(0:10,10,4,2)$over.dis.para #extracting the over dispersion value## Not run:#plotting the random variables and cumulative probability valuescol <- rainbow(5)a <- c(1,2,5,10,.85)plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))for(i in1:5){lines(0:10,pKumBin(0:10,10,a[i],a[i]),col = col[i])points(0:10,pKumBin(0:10,10,a[i],a[i]),col = col[i])}## End(Not run)pKumBin(0:10,10,4,2)#acquiring the cumulative probability values